Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Am J Respir Cell Mol Biol ; 68(4): 366-380, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36227799

RESUMEN

Profibrotic and prohomeostatic macrophage phenotypes remain ill-defined, both in vivo and in vitro, impeding the successful development of drugs that reprogram macrophages as an attractive therapeutic approach to manage fibrotic disease. The goal of this study was to reveal profibrotic and prohomeostatic macrophage phenotypes that could guide the design of new therapeutic approaches targeting macrophages to treat fibrotic disease. This study used nintedanib, a broad kinase inhibitor approved for idiopathic pulmonary fibrosis, to dissect lung macrophage phenotypes during fibrosis-linked inflammation by combining in vivo and in vitro bulk and single-cell RNA-sequencing approaches. In the bleomycin model, nintedanib drove the expression of IL-4/IL-13-associated genes important for tissue regeneration and repair at early and late time points in lung macrophages. These findings were replicated in vitro in mouse primary bone marrow-derived macrophages exposed to IL-4/IL-13 and nintedanib. In addition, nintedanib promoted the expression of IL-4/IL-13 pathway genes in human macrophages in vitro. The molecular mechanism was connected to inhibition of the colony stimulating factor 1 (CSF1) receptor in both human and mouse macrophages. Moreover, nintedanib counterbalanced the effects of TNF on IL-4/IL-13 in macrophages to promote expression of IL-4/IL-13-regulated tissue repair genes in fibrotic contexts in vivo and in vitro. This study demonstrates that one of nintedanib's antifibrotic mechanisms is to increase IL-4 signaling in macrophages through inhibition of the CSF1 receptor, resulting in the promotion of tissue repair phenotypes.


Asunto(s)
Fibrosis Pulmonar Idiopática , Indoles , Macrófagos , Indoles/farmacología , Animales , Ratones , Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Interleucina-4/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo
2.
Hepatology ; 75(2): 252-265, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34387888

RESUMEN

BACKGROUND AND AIMS: Parenteral nutrition (PN)-associated cholestasis (PNAC) complicates the care of patients with intestinal failure. In PNAC, phytosterol containing PN synergizes with intestinal injury and IL-1ß derived from activated hepatic macrophages to suppress hepatocyte farnesoid X receptor (FXR) signaling and promote PNAC. We hypothesized that pharmacological activation of FXR would prevent PNAC in a mouse model. APPROACH AND RESULTS: To induce PNAC, male C57BL/6 mice were subjected to intestinal injury (2% dextran sulfate sodium [DSS] for 4 days) followed by central venous catheterization and 14-day infusion of PN with or without the FXR agonist GW4064. Following sacrifice, hepatocellular injury, inflammation, and biliary and sterol transporter expression were determined. GW4064 (30 mg/kg/day) added to PN on days 4-14 prevented hepatic injury and cholestasis; reversed the suppressed mRNA expression of nuclear receptor subfamily 1, group H, member 4 (Nr1h4)/FXR, ATP-binding cassette subfamily B member 11 (Abcb11)/bile salt export pump, ATP-binding cassette subfamily C member 2 (Abcc2), ATP binding cassette subfamily B member 4(Abcb4), and ATP-binding cassette subfamily G members 5/8(Abcg5/8); and normalized serum bile acids. Chromatin immunoprecipitation of liver showed that GW4064 increased FXR binding to the Abcb11 promoter. Furthermore, GW4064 prevented DSS-PN-induced hepatic macrophage accumulation, hepatic expression of genes associated with macrophage recruitment and activation (ll-1b, C-C motif chemokine receptor 2, integrin subunit alpha M, lymphocyte antigen 6 complex locus C), and hepatic macrophage cytokine transcription in response to lipopolysaccharide in vitro. In primary mouse hepatocytes, GW4064 activated transcription of FXR canonical targets, irrespective of IL-1ß exposure. Intestinal inflammation and ileal mRNAs (Nr1h4, Fgf15, and organic solute transporter alpha) were not different among groups, supporting a liver-specific effect of GW4064 in this model. CONCLUSIONS: GW4064 prevents PNAC in mice through restoration of hepatic FXR signaling, resulting in increased expression of canalicular bile and of sterol and phospholipid transporters and suppression of macrophage recruitment and activation. These data support augmenting FXR activity as a therapeutic strategy to alleviate or prevent PNAC.


Asunto(s)
Colestasis/prevención & control , Expresión Génica/efectos de los fármacos , Isoxazoles/farmacología , Nutrición Parenteral/efectos adversos , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/genética , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/genética , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/genética , Animales , Ácidos y Sales Biliares/sangre , Colestasis/etiología , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/metabolismo , Interleucina-1beta/farmacología , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/terapia , Isoxazoles/uso terapéutico , Lipoproteínas/genética , Hepatopatías/etiología , Hepatopatías/patología , Hepatopatías/prevención & control , Activación de Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos
3.
Hepatology ; 74(6): 3284-3300, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34310734

RESUMEN

BACKGROUND AND AIMS: Chronically administered parenteral nutrition (PN) in patients with intestinal failure carries the risk for developing PN-associated cholestasis (PNAC). We have demonstrated that farnesoid X receptor (FXR) and liver X receptor (LXR), proinflammatory interleukin-1 beta (IL-1ß), and infused phytosterols are important in murine PNAC pathogenesis. In this study we examined the role of nuclear receptor liver receptor homolog 1 (LRH-1) and phytosterols in PNAC. APPROACH AND RESULTS: In a C57BL/6 PNAC mouse model (dextran sulfate sodium [DSS] pretreatment followed by 14 days of PN; DSS-PN), hepatic nuclear receptor subfamily 5, group A, member 2/LRH-1 mRNA, LRH-1 protein expression, and binding of LRH-1 at the Abcg5/8 and Cyp7a1 promoter was reduced. Interleukin-1 receptor-deficient mice (Il-1r-/- /DSS-PN) were protected from PNAC and had significantly increased hepatic mRNA and protein expression of LRH-1. NF-κB activation and binding to the LRH-1 promoter were increased in DSS-PN PNAC mice and normalized in Il-1r-/- /DSS-PN mice. Knockdown of NF-κB in IL-1ß-exposed HepG2 cells increased expression of LRH-1 and ABCG5. Treatment of HepG2 cells and primary mouse hepatocytes with an LRH-1 inverse agonist, ML179, significantly reduced mRNA expression of FXR targets ATP binding cassette subfamily C member 2/multidrug resistance associated protein 2 (ABCC2/MRP2), nuclear receptor subfamily 0, groupB, member 2/small heterodimer partner (NR0B2/SHP), and ATP binding cassette subfamily B member 11/bile salt export pump (ABCB11/BSEP). Co-incubation with phytosterols further reduced expression of these genes. Similar results were obtained by suppressing the LRH-1 targets ABCG5/8 by treatment with small interfering RNA, IL-1ß, or LXR antagonist GSK2033. Liquid chromatography-mass spectrometry and chromatin immunoprecipitation experiments in HepG2 cells showed that ATP binding cassette subfamily G member 5/8 (ABCG5/8) suppression by GSK2033 increased the accumulation of phytosterols and reduced binding of FXR to the SHP promoter. Finally, treatment with LRH-1 agonist, dilauroyl phosphatidylcholine (DLPC) protected DSS-PN mice from PNAC. CONCLUSIONS: This study suggests that NF-κB regulation of LRH-1 and downstream genes may affect phytosterol-mediated antagonism of FXR signaling in the pathogenesis of PNAC. LRH-1 could be a potential therapeutic target for PNAC.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/metabolismo , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/metabolismo , Colestasis/etiología , Lipoproteínas/metabolismo , FN-kappa B/metabolismo , Nutrición Parenteral/efectos adversos , Fitosteroles/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Colestasis/metabolismo , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Cromatografía de Gases y Espectrometría de Masas , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Ratones , Ratones Endogámicos C57BL
4.
Am J Physiol Cell Physiol ; 320(1): C142-C151, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33175574

RESUMEN

Treatment options for liver metastases (primarily colorectal cancer) are limited by high recurrence rates and persistent tumor progression. Surgical approaches to management of these metastases typically use heat energy including electrocautery, argon beam coagulation, thermal ablation of surgical margins for hemostasis, and preemptive thermal ablation to prevent bleeding or to effect tumor destruction. Based on high rates of local recurrence, these studies assess whether local effects of hepatic thermal injury (HTI) might contribute to poor outcomes by promoting a hepatic microenvironment favorable for tumor engraftment or progression due to induction of procancer cytokines and deleterious immune infiltrates at the site of thermal injury. To test this hypothesis, an immunocompetent mouse model was developed wherein HTI was combined with concomitant intrasplenic injection of cells from a well-characterized MC38 colon carcinoma cell line. In this model, HTI resulted in a significant increase in engraftment and progression of MC38 tumors at the site of thermal injury. Furthermore, there were local increases in expression of messenger ribonucleic acid (mRNA) for hypoxia-inducible factor-1α (HIF1α), arginase-1, and vascular endothelial growth factor α and activation changes in recruited macrophages at the HTI site but not in untreated liver tissue. Inhibition of HIF1α following HTI significantly reduced discreet hepatic tumor development (P = 0.03). Taken together, these findings demonstrate that HTI creates a favorable local environment that is associated with protumorigenic activation of macrophages and implantation of circulating tumors. Discrete targeting of HIF1α signaling or inhibiting macrophages offers potential strategies for improving the outcome of surgical management of hepatic metastases where HTI is used.


Asunto(s)
Adenocarcinoma/secundario , Quemaduras por Electricidad/patología , Neoplasias del Colon/patología , Neoplasias Hepáticas/secundario , Hígado/patología , Microambiente Tumoral , Adenocarcinoma/metabolismo , Animales , Arginasa/genética , Arginasa/metabolismo , Quemaduras por Electricidad/genética , Quemaduras por Electricidad/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Activación de Macrófagos , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
Nat Immunol ; 9(12): 1399-406, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18978793

RESUMEN

Toll-like receptor (TLR) signaling in macrophages is required for antipathogen responses, including the biosynthesis of nitric oxide from arginine, and is essential for immunity to Mycobacterium tuberculosis, Toxoplasma gondii and other intracellular pathogens. Here we report a 'loophole' in the TLR pathway that is advantageous to these pathogens. Intracellular pathogens induced expression of the arginine hydrolytic enzyme arginase 1 (Arg1) in mouse macrophages through the TLR pathway. In contrast to diseases dominated by T helper type 2 responses in which Arg1 expression is greatly increased by interleukin 4 and 13 signaling through the transcription factor STAT6, TLR-mediated Arg1 induction was independent of the STAT6 pathway. Specific elimination of Arg1 in macrophages favored host survival during T. gondii infection and decreased lung bacterial load during tuberculosis infection.


Asunto(s)
Arginasa/inmunología , Infecciones Bacterianas/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Receptores Toll-Like/inmunología , Animales , Arginasa/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/inmunología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Factor de Transcripción STAT6/inmunología , Factor de Transcripción STAT6/metabolismo , Receptores Toll-Like/metabolismo
6.
J Immunol ; 198(12): 4802-4812, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28500078

RESUMEN

Studies in various animal models suggest an important role for pulmonary macrophages in the pathogenesis of pulmonary hypertension (PH). Yet, the molecular mechanisms characterizing the functional macrophage phenotype relative to time and pulmonary localization and compartmentalization remain largely unknown. In this study, we used a hypoxic murine model of PH in combination with FACS to quantify and isolate lung macrophages from two compartments over time and characterize their programing via RNA sequencing approaches. In response to hypoxia, we found an early increase in macrophage number that was restricted to the interstitial/perivascular compartment, without recruitment of macrophages to the alveolar compartment or changes in the number of resident alveolar macrophages. Principal component analysis demonstrated significant differences in overall gene expression between alveolar and interstitial macrophages (IMs) at baseline and after 4 and 14 d hypoxic exposure. Alveolar macrophages at both day 4 and 14 and IMs at day 4 shared a conserved hypoxia program characterized by mitochondrial dysfunction, proinflammatory gene activation, and mTORC1 signaling, whereas IMs at day 14 demonstrated a unique anti-inflammatory/proreparative programming state. We conclude that the pathogenesis of vascular remodeling in hypoxic PH involves an early compartment-independent activation of lung macrophages toward a conserved hypoxia program, with the development of compartment-specific programs later in the course of the disease. Thus, harnessing time- and compartment-specific differences in lung macrophage polarization needs to be considered in the therapeutic targeting of macrophages in hypoxic PH and potentially other inflammatory lung diseases.


Asunto(s)
Hipertensión Pulmonar/inmunología , Hipoxia/inmunología , Pulmón/inmunología , Activación de Macrófagos , Macrófagos Alveolares/inmunología , Animales , Células Cultivadas , Fibroblastos/inmunología , Expresión Génica , Pulmón/fisiopatología , Ratones , Monocitos/inmunología , Fenotipo , Arteria Pulmonar/fisiología
7.
Semin Immunol ; 27(4): 267-75, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26454572

RESUMEN

Macrophages display a spectrum of functional activation phenotypes depending on the composition of the microenvironment they reside in, including type of tissue/organ and character of injurious challenge they are exposed to. Our understanding of how macrophage plasticity is regulated by the local microenvironment is still limited. Here we review and discuss the recent literature regarding the contribution of cellular metabolic pathways to the ability of the macrophage to sense the microenvironment and to alter its function. We propose that distinct alterations in the microenvironment induce a spectrum of inducible and reversible metabolic programs that might form the basis of the inducible and reversible spectrum of functional macrophage activation/polarization phenotypes. We highlight that metabolic pathways in the bidirectional communication between macrophages and stromals cells are an important component of chronic inflammatory conditions. Recent work demonstrates that inflammatory macrophage activation is tightly associated with metabolic reprogramming to aerobic glycolysis, an altered TCA cycle, and reduced mitochondrial respiration. We review cytosolic and mitochondrial mechanisms that promote initiation and maintenance of macrophage activation as they relate to increased aerobic glycolysis and highlight potential pathways through which anti-inflammatory IL-10 could promote macrophage deactivation. Finally, we propose that in addition to their role in energy generation and regulation of apoptosis, mitochondria reprogram their metabolism to also participate in regulating macrophage activation and plasticity.


Asunto(s)
Activación de Macrófagos , Macrófagos/citología , Macrófagos/metabolismo , Ciclo del Ácido Cítrico , Glucólisis , Humanos , Inflamación/inmunología , Macrófagos/inmunología
8.
Circulation ; 136(25): 2468-2485, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-28972001

RESUMEN

BACKGROUND: An emerging metabolic theory of pulmonary hypertension (PH) suggests that cellular and mitochondrial metabolic dysfunction underlies the pathology of this disease. We and others have previously demonstrated the existence of hyperproliferative, apoptosis-resistant, proinflammatory adventitial fibroblasts from human and bovine hypertensive pulmonary arterial walls (PH-Fibs) that exhibit constitutive reprogramming of glycolytic and mitochondrial metabolism, accompanied by an increased ratio of glucose catabolism through glycolysis versus the tricarboxylic acid cycle. However, the mechanisms responsible for these metabolic alterations in PH-Fibs remain unknown. We hypothesized that in PH-Fibs microRNA-124 (miR-124) regulates PTBP1 (polypyrimidine tract binding protein 1) expression to control alternative splicing of pyruvate kinase muscle (PKM) isoforms 1 and 2, resulting in an increased PKM2/PKM1 ratio, which promotes glycolysis and proliferation even in aerobic environments. METHODS: Pulmonary adventitial fibroblasts were isolated from calves and humans with severe PH (PH-Fibs) and from normal subjects. PTBP1 gene knockdown was achieved via PTBP1-siRNA; restoration of miR-124 was performed with miR-124 mimic. TEPP-46 and shikonin were used to manipulate PKM2 glycolytic function. Histone deacetylase inhibitors were used to treat cells. Metabolic products were determined by mass spectrometry-based metabolomics analyses, and mitochondrial function was analyzed by confocal microscopy and spectrofluorometry. RESULTS: We detected an increased PKM2/PKM1 ratio in PH-Fibs compared with normal subjects. PKM2 inhibition reversed the glycolytic status of PH-Fibs, decreased their cell proliferation, and attenuated macrophage interleukin-1ß expression. Furthermore, normalizing the PKM2/PKM1 ratio in PH-Fibs by miR-124 overexpression or PTBP1 knockdown reversed the glycolytic phenotype (decreased the production of glycolytic intermediates and byproducts, ie, lactate), rescued mitochondrial reprogramming, and decreased cell proliferation. Pharmacological manipulation of PKM2 activity with TEPP-46 and shikonin or treatment with histone deacetylase inhibitors produced similar results. CONCLUSIONS: In PH, miR-124, through the alternative splicing factor PTBP1, regulates the PKM2/PKM1 ratio, the overall metabolic, proliferative, and inflammatory state of cells. This PH phenotype can be rescued with interventions at various levels of the metabolic cascade. These findings suggest a more integrated view of vascular cell metabolism, which may open unique therapeutic prospects in targeting the dynamic glycolytic and mitochondrial interactions and between mesenchymal inflammatory cells in PH.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Hipertensión Pulmonar/patología , MicroARNs/metabolismo , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Piruvato Quinasa/metabolismo , Empalme Alternativo , Animales , Antagomirs/metabolismo , Bovinos , Proliferación Celular , Endotelio Vascular/citología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Glucólisis , Ribonucleoproteínas Nucleares Heterogéneas/antagonistas & inhibidores , Ribonucleoproteínas Nucleares Heterogéneas/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Hipertensión Pulmonar/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Naftoquinonas/farmacología , Proteína de Unión al Tracto de Polipirimidina/antagonistas & inhibidores , Proteína de Unión al Tracto de Polipirimidina/genética , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/genética , Interferencia de ARN
9.
Circulation ; 134(15): 1105-1121, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27562971

RESUMEN

BACKGROUND: Changes in metabolism have been suggested to contribute to the aberrant phenotype of vascular wall cells, including fibroblasts, in pulmonary hypertension (PH). Here, we test the hypothesis that metabolic reprogramming to aerobic glycolysis is a critical adaptation of fibroblasts in the hypertensive vessel wall that drives proliferative and proinflammatory activation through a mechanism involving increased activity of the NADH-sensitive transcriptional corepressor C-terminal binding protein 1 (CtBP1). METHODS: RNA sequencing, quantitative polymerase chain reaction,13C-nuclear magnetic resonance, fluorescence-lifetime imaging, mass spectrometry-based metabolomics, and tracing experiments with U-13C-glucose were used to assess glycolytic reprogramming and to measure the NADH/NAD+ ratio in bovine and human adventitial fibroblasts and mouse lung tissues. Immunohistochemistry was used to assess CtBP1 expression in the whole-lung tissues. CtBP1 siRNA and the pharmacological inhibitor 4-methylthio-2-oxobutyric acid (MTOB) were used to abrogate CtBP1 activity in cells and hypoxic mice. RESULTS: We found that adventitial fibroblasts from calves with severe hypoxia-induced PH and humans with idiopathic pulmonary arterial hypertension (PH-Fibs) displayed aerobic glycolysis when cultured under normoxia, accompanied by increased free NADH and NADH/NAD+ ratios. Expression of the NADH sensor CtBP1 was increased in vivo and in vitro in fibroblasts within the pulmonary adventitia of humans with idiopathic pulmonary arterial hypertension and animals with PH and cultured PH-Fibs, respectively. Decreasing NADH pharmacologically with MTOB or genetically blocking CtBP1 with siRNA upregulated the cyclin-dependent genes (p15 and p21) and proapoptotic regulators (NOXA and PERP), attenuated proliferation, corrected the glycolytic reprogramming phenotype of PH-Fibs, and augmented transcription of the anti-inflammatory gene HMOX1. Chromatin immunoprecipitation analysis demonstrated that CtBP1 directly binds the HMOX1 promoter. Treatment of hypoxic mice with MTOB decreased glycolysis and expression of inflammatory genes, attenuated proliferation, and suppressed macrophage numbers and remodeling in the distal pulmonary vasculature. CONCLUSIONS: CtBP1 is a critical factor linking changes in cell metabolism to cell phenotype in hypoxic and other forms of PH and a therapeutic target.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas de Unión al ADN/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Fibroblastos/metabolismo , Hipertensión Pulmonar/metabolismo , Adventicia/metabolismo , Adventicia/patología , Oxidorreductasas de Alcohol/genética , Animales , Células Cultivadas , Proteínas de Unión al ADN/genética , Hipertensión Pulmonar Primaria Familiar/genética , Hipertensión Pulmonar Primaria Familiar/patología , Fibroblastos/patología , Humanos , Hipertensión Pulmonar/patología , Ratones , Fenotipo
10.
J Immunol ; 195(8): 3866-79, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26342031

RESUMEN

Elevated serum concentrations of the vasoactive protein endothelin-1 (ET-1) occur in the setting of systemic inflammatory response syndrome and contribute to distal organ hypoperfusion and pulmonary hypertension. Thus, understanding the cellular source and transcriptional regulation of systemic inflammatory stress-induced ET-1 expression may reveal therapeutic targets. Using a murine model of LPS-induced septic shock, we demonstrate that the hepatic macrophage is the primary source of elevated circulating ET-1, rather than the endothelium as previously proposed. Using pharmacologic inhibitors, ET-1 promoter luciferase assays, and by silencing and overexpressing NF-κB inhibitory protein IκB expression, we demonstrate that LPS-induced ET-1 expression occurs via an NF-κB-dependent pathway. Finally, the specific role of the cRel/p65 inhibitory protein IκBß was evaluated. Although cytoplasmic IκBß inhibits activity of cRel-containing NF-κB dimers, nuclear IκBß stabilizes NF-κB/DNA binding and enhances gene expression. Using targeted pharmacologic therapies to specifically prevent IκBß/NF-κB signaling, as well as mice genetically modified to overexpress IκBß, we show that nuclear IκBß is both necessary and sufficient to drive LPS-induced ET-1 expression. Together, these results mechanistically link the innate immune response mediated by IκBß/NF-κB to ET-1 expression and potentially reveal therapeutic targets for patients with Gram-negative septic shock.


Asunto(s)
Endotelina-1/inmunología , Endotoxemia/inmunología , Regulación de la Expresión Génica/inmunología , Proteínas I-kappa B/inmunología , Hígado/inmunología , Macrófagos/inmunología , FN-kappa B/inmunología , Transducción de Señal/inmunología , Animales , Línea Celular , Endotelina-1/genética , Endotoxemia/genética , Endotoxemia/patología , Proteínas I-kappa B/genética , Hígado/patología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , FN-kappa B/genética , Transducción de Señal/genética
11.
Annu Rev Physiol ; 75: 23-47, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23216413

RESUMEN

The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in.


Asunto(s)
Adventicia/fisiología , Vasos Sanguíneos/citología , Vasos Sanguíneos/fisiología , Adventicia/citología , Animales , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Macrófagos/citología , Macrófagos/fisiología , Células Madre/citología , Células Madre/fisiología , Estrés Fisiológico/fisiología , Vasa Vasorum/citología , Vasa Vasorum/fisiología
12.
Am J Respir Cell Mol Biol ; 55(1): 47-57, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26699943

RESUMEN

Remodeling of the distal pulmonary artery wall is a characteristic feature of pulmonary hypertension (PH). In hypoxic PH, the most substantial pathologic changes occur in the adventitia. Here, there is marked fibroblast proliferation and profound macrophage accumulation. These PH fibroblasts (PH-Fibs) maintain a hyperproliferative, apoptotic-resistant, and proinflammatory phenotype in ex vivo culture. Considering that a similar phenotype is observed in cancer cells, where it has been associated, at least in part, with specific alterations in mitochondrial metabolism, we sought to define the state of mitochondrial metabolism in PH-Fibs. In PH-Fibs, pyruvate dehydrogenase was markedly inhibited, resulting in metabolism of pyruvate to lactate, thus consistent with a Warburg-like phenotype. In addition, mitochondrial bioenergetics were suppressed and mitochondrial fragmentation was increased in PH-Fibs. Most importantly, complex I activity was substantially decreased, which was associated with down-regulation of the accessory subunit nicotinamide adenine dinucleotide reduced dehydrogenase (ubiquinone) Fe-S protein 4 (NDUFS4). Owing to less-efficient ATP synthesis, mitochondria were hyperpolarized and mitochondrial superoxide production was increased. This pro-oxidative status was further augmented by simultaneous induction of cytosolic nicotinamide adenine dinucleotide phosphate reduced oxidase 4. Although acute and chronic exposure to hypoxia of adventitial fibroblasts from healthy control vessels induced increased glycolysis, it did not induce complex I deficiency as observed in PH-Fibs. This suggests that hypoxia alone is insufficient to induce NDUFS4 down-regulation and constitutive abnormalities in complex I. In conclusion, our study provides evidence that, in the pathogenesis of vascular remodeling in PH, alterations in fibroblast mitochondrial metabolism drive distinct changes in cellular behavior, which potentially occur independently of hypoxia.


Asunto(s)
Reprogramación Celular , Fibroblastos/metabolismo , Hipertensión Pulmonar/metabolismo , Mitocondrias/metabolismo , Animales , Bovinos , Respiración de la Célula , Enfermedad Crónica , Ciclo del Ácido Cítrico , Regulación hacia Abajo , Complejo I de Transporte de Electrón/metabolismo , Metabolismo Energético , Glucólisis , Humanos , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/patología , Hipoxia/complicaciones , Hipoxia/patología , Pulmón/patología , Macrófagos/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa , Comunicación Paracrina , Fenotipo , Complejo Piruvato Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , Superóxidos/metabolismo
13.
J Immunol ; 193(2): 597-609, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24928992

RESUMEN

Macrophage accumulation is not only a characteristic hallmark but is also a critical component of pulmonary artery remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Using multiple levels of in vivo (bovine and rat models of hypoxia-induced PH, together with human tissue samples) and in vitro (primary mouse, rat, and bovine macrophages, human monocytes, and primary human and bovine fibroblasts) approaches, we observed that adventitial fibroblasts derived from hypertensive pulmonary arteries (bovine and human) regulate macrophage activation. These fibroblasts activate macrophages through paracrine IL-6 and STAT3, HIF1, and C/EBPß signaling to drive expression of genes previously implicated in chronic inflammation, tissue remodeling, and PH. This distinct fibroblast-activated macrophage phenotype was independent of IL-4/IL-13-STAT6 and TLR-MyD88 signaling. We found that genetic STAT3 haplodeficiency in macrophages attenuated macrophage activation, complete STAT3 deficiency increased macrophage activation through compensatory upregulation of STAT1 signaling, and deficiency in C/EBPß or HIF1 attenuated fibroblast-driven macrophage activation. These findings challenge the current paradigm of IL-4/IL-13-STAT6-mediated alternative macrophage activation as the sole driver of vascular remodeling in PH, and uncover a cross-talk between adventitial fibroblasts and macrophages in which paracrine IL-6-activated STAT3, HIF1α, and C/EBPß signaling are critical for macrophage activation and polarization. Thus, targeting IL-6 signaling in macrophages by completely inhibiting C/EBPß or HIF1α or by partially inhibiting STAT3 may hold therapeutic value for treatment of PH and other inflammatory conditions characterized by increased IL-6 and absent IL-4/IL-13 signaling.


Asunto(s)
Fibroblastos/inmunología , Hipertensión Pulmonar/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Animales , Animales Recién Nacidos , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/inmunología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Bovinos , Línea Celular Tumoral , Células Cultivadas , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Fibroblastos/metabolismo , Fibrosis/genética , Fibrosis/inmunología , Fibrosis/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Expresión Génica/inmunología , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Immunoblotting , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética , Macrófagos/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Ratas Endogámicas WKY , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Factor de Transcripción STAT3/metabolismo
14.
Am J Physiol Lung Cell Mol Physiol ; 308(3): L229-52, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25416383

RESUMEN

Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop "out-of-proportion" severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines ("second hit") antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease.


Asunto(s)
Hipertensión Pulmonar/inmunología , Vasculitis/inmunología , Animales , Hipoxia de la Célula , Epigénesis Genética/inmunología , Humanos , Hipertensión Pulmonar/metabolismo , Pulmón/irrigación sanguínea , Pulmón/inmunología , Macrófagos Alveolares/inmunología , Transducción de Señal , Vasculitis/metabolismo
15.
Acta Biomater ; 177: 118-131, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38350556

RESUMEN

Idiopathic pulmonary fibrosis (IPF), for which effective treatments are limited, results in excessive and disorganized deposition of aberrant extracellular matrix (ECM). An altered ECM microenvironment is postulated to contribute to disease progression through inducing profibrotic behavior of lung fibroblasts, the main producers and regulators of ECM. Here, we examined this hypothesis in a 3D in vitro model system by growing primary human lung fibroblasts in ECM-derived hydrogels from non-fibrotic (control) or IPF lung tissue. Using this model, we compared how control and IPF lung-derived fibroblasts responded in control and fibrotic microenvironments in a combinatorial manner. Culture of fibroblasts in fibrotic hydrogels did not alter in the overall amount of collagen or glycosaminoglycans but did cause a drastic change in fiber organization compared to culture in control hydrogels. High-density collagen percentage was increased by control fibroblasts in IPF hydrogels at day 7, but decreased at day 14. In contrast, IPF fibroblasts only decreased the high-density collagen percentage at day 14, which was accompanied by enhanced fiber alignment in IPF hydrogels. Similarly, stiffness of fibrotic hydrogels was increased only by control fibroblasts by day 14 while those of control hydrogels were not altered by fibroblasts. These data highlight how the ECM-remodeling responses of fibroblasts are influenced by the origin of both the cells and the ECM. Moreover, by showing how the 3D microenvironment plays a crucial role in directing cells, our study paves the way in guiding future investigations examining fibrotic processes with respect to ECM remodeling responses of fibroblasts. STATEMENT OF SIGNIFICANCE: In this study, we investigated the influence of the altered extracellular matrix (ECM) in Idiopathic Pulmonary Fibrosis (IPF), using a 3D in vitro model system composed of ECM-derived hydrogels from both IPF and control lungs, seeded with human IPF and control lung fibroblasts. While our results indicated that fibrotic microenvironment did not change the overall collagen or glycosaminoglycan content, it resulted in a dramatically alteration of fiber organization and mechanical properties. Control fibroblasts responded differently from IPF fibroblasts, highlighting the unique instructive role of the fibrotic ECM and the interplay with fibroblast origin. These results underscore the importance of 3D microenvironments in guiding pro-fibrotic responses, offering potential insights for future IPF therapies as well as other fibrotic diseases and cancer.


Asunto(s)
Matriz Extracelular , Fibrosis Pulmonar Idiopática , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Fibrosis , Colágeno , Fibroblastos/patología , Hidrogeles/farmacología
16.
Hepatology ; 55(5): 1518-28, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22120983

RESUMEN

UNLABELLED: Infants with intestinal failure who are parenteral nutrition (PN)-dependent may develop cholestatic liver injury and cirrhosis (PN-associated liver injury: PNALI). The pathogenesis of PNALI remains incompletely understood. We hypothesized that intestinal injury with increased intestinal permeability combined with administration of PN promotes lipopolysaccharide (LPS)-Toll-like receptor 4 (TLR4) signaling dependent Kupffer cell (KC) activation as an early event in the pathogenesis of PNALI. We developed a mouse model in which intestinal injury and increased permeability were induced by oral treatment for 4 days with dextran sulphate sodium (DSS) followed by continuous infusion of soy lipid-based PN solution through a central venous catheter for 7 (PN7d/DSS) and 28 (PN28d/DSS) days. Purified KCs were probed for transcription of proinflammatory cytokines. PN7d/DSS mice showed increased intestinal permeability and elevated portal vein LPS levels, evidence of hepatocyte injury and cholestasis (serum aspartate aminotransferase, alanine aminotransferase, bile acids, total bilirubin), and increased KC expression of interleukin-6 (Il6), tumor necrosis factor α (Tnfα), and transforming growth factor ß (Tgfß). Markers of liver injury remained elevated in PN28d/DSS mice associated with lobular inflammation, hepatocyte apoptosis, peliosis, and KC hypertrophy and hyperplasia. PN infusion without DSS pretreatment or DSS pretreatment alone did not result in liver injury or KC activation, even though portal vein LPS levels were elevated. Suppression of the intestinal microbiota with broad spectrum antibiotics or ablation of TLR4 signaling in Tlr4 mutant mice resulted in significantly reduced KC activation and markedly attenuated liver injury in PN7d/DSS mice. CONCLUSION: These data suggest that intestinal-derived LPS activates KC through TLR4 signaling in early stages of PNALI.


Asunto(s)
Intestinos/lesiones , Macrófagos del Hígado/metabolismo , Hígado/lesiones , Nutrición Parenteral/efectos adversos , Receptor Toll-Like 4/metabolismo , Animales , Biopsia con Aguja , Permeabilidad de la Membrana Celular/fisiología , Modelos Animales de Enfermedad , Inmunohistoquímica , Intestinos/patología , Lipopolisacáridos/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nutrición Parenteral/métodos , Distribución Aleatoria , Valores de Referencia , Transducción de Señal
17.
J Immunol ; 187(5): 2711-22, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21813768

RESUMEN

Persistent accumulation of monocytes/macrophages in the pulmonary artery adventitial/perivascular areas of animals and humans with pulmonary hypertension has been documented. The cellular mechanisms contributing to chronic inflammatory responses remain unclear. We hypothesized that perivascular inflammation is perpetuated by activated adventitial fibroblasts, which, through sustained production of proinflammatory cytokines/chemokines and adhesion molecules, induce accumulation, retention, and activation of monocytes/macrophages. We further hypothesized that this proinflammatory phenotype is the result of the abnormal activity of histone-modifying enzymes, specifically, class I histone deacetylases (HDACs). Pulmonary adventitial fibroblasts from chronically hypoxic hypertensive calves (termed PH-Fibs) expressed a constitutive and persistent proinflammatory phenotype defined by high expression of IL-1ß, IL-6, CCL2(MCP-1), CXCL12(SDF-1), CCL5(RANTES), CCR7, CXCR4, GM-CSF, CD40, CD40L, and VCAM-1. The proinflammatory phenotype of PH-Fibs was associated with epigenetic alterations as demonstrated by increased activity of HDACs and the findings that class I HDAC inhibitors markedly decreased cytokine/chemokine mRNA expression levels in these cells. PH-Fibs induced increased adhesion of THP-1 monocytes and produced soluble factors that induced increased migration of THP-1 and murine bone marrow-derived macrophages as well as activated monocytes/macrophages to express proinflammatory cytokines and profibrogenic mediators (TIMP1 and type I collagen) at the transcriptional level. Class I HDAC inhibitors markedly reduced the ability of PH-Fibs to induce monocyte migration and proinflammatory activation. The emergence of a distinct adventitial fibroblast population with an epigenetically altered proinflammatory phenotype capable of recruiting, retaining, and activating monocytes/macrophages characterizes pulmonary hypertension-associated vascular remodeling and thus could contribute significantly to chronic inflammatory processes in the pulmonary artery wall.


Asunto(s)
Epigénesis Genética , Fibroblastos/inmunología , Hipertensión Pulmonar/inmunología , Neumonía/inmunología , Animales , Animales Recién Nacidos , Western Blotting , Bovinos , Adhesión Celular , Movimiento Celular , Tejido Conectivo/inmunología , Citocinas/biosíntesis , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Hipertensión Pulmonar/metabolismo , Hipoxia/inmunología , Hipoxia/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Fenotipo , Neumonía/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Hepatol Commun ; 7(3): e0056, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36848082

RESUMEN

BACKGROUND AND AIMS: Parenteral nutrition (PN) in patients with intestinal failure can lead to cholestasis (PNAC). In a PNAC mouse model, farnesoid X receptor (FXR) agonist (GW4064) treatment alleviated IL-1ß-dependent cholestatic liver injury. The objective of this study was to determine whether this hepatic protection of FXR activation is mediated through IL-6-STAT3 signaling. APPROACH AND RESULTS: Hepatic apoptotic pathways [Fas-associated protein with death domain (Fas) mRNA, caspase 8 protein, and cleaved caspase 3] and IL-6-STAT3 signaling, and expression of its downstream effectors Socs1/3 were all upregulated in the mouse PNAC model (dextran sulfate sodium enterally × 4 d followed by total PN for 14 d). Il1r-/- mice were protected from PNAC in conjunction with suppression of the FAS pathway. GW4064 treatment in the PNAC mouse increased hepatic FXR binding to the Stat3 promoter, further increased STAT3 phosphorylation and upregulated Socs1 and Socs3 mRNA, and prevented cholestasis. In HepG2 cells and primary mouse hepatocytes, IL-1ß induced IL-6 mRNA and protein, which were suppressed by GW4064. In IL-1ß or phytosterols treated HepG2 and Huh7 cells, siRNA knockdown of STAT3 significantly reduced GW4064-upregulated transcription of hepatoprotective nuclear receptor subfamily 0, group B, member 2 (NR0B2) and ABCG8. CONCLUSIONS: STAT3 signaling mediated in part the protective effects of GW4064 in the PNAC mouse, and in HepG2 cells and hepatocytes exposed to either IL-1ß or phytosterols, 2 factors critical in PNAC pathogenesis. These data demonstrate that FXR agonists may mediate hepatoprotective effects in cholestasis by inducing STAT3 signaling.


Asunto(s)
Colestasis , Interleucina-6 , Animales , Ratones , Interleucina-6/genética , Transducción de Señal , ARN Interferente Pequeño , Hepatocitos , Modelos Animales de Enfermedad
19.
PLoS One ; 18(8): e0290385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37647292

RESUMEN

BACKGROUND: We have developed a mouse model of Parenteral Nutrition Associated Cholestasis (PNAC) in which combining intestinal inflammation and PN infusion results in cholestasis, hepatic macrophage activation, and transcriptional suppression of bile acid and sterol signaling and transport. In the liver, the master circadian gene regulators Bmal/Arntl and Clock drive circadian modulation of hepatic functions, including bile acid synthesis. Once activated, Bmal and Clock are downregulated by several transcription factors including Reverbα (Nr1d1), Dbp (Dbp), Dec1/2 (Bhlhe40/41), Cry1/2 (Cry1/2) and Per1/2 (Per1/2). The aim of this study was to examine the effects of PN on expression of hepatic circadian rhythm (CR) regulatory genes in mice. METHODS: WT, IL1KO or TNFRKO mice were exposed to dextran sulfate sodium (DSS) for 4 days followed by soy-oil lipid emulsion-based PN infusion through a central venous catheter for 14 days (DSS-PN) and the expression of key CR regulatory transcription factors evaluated. Animals were NPO on a 14 hr light-dark cycle and were administered PN continuously over 24 hrs. Mice were sacrificed, and hepatic tissue obtained at 9-10AM (Zeitgeber Z+3/Z+4 hrs). PNAC was defined by increased serum aspartate aminotransferase, alanine aminotransferase, total bile acids, and total bilirubin and the effect of i.p. injection of recombinant IL-1ß (200ng/mouse) or TNFα (200ng/mouse) on CR expression was examined after 4 hrs. RESULTS: In the PNAC model, DSS-PN increased serum biomarkers of hepatic injury (ALT, AST, serum bile acids) which was suppressed in both DSS-PN IL1KO and DSS-PN TNFRKO mice. In WT DSS-PN, mRNA expression of Arntl and Dec1 was suppressed corresponding to increased Nr1d1, Per2, Dbp and Dec2. These effects were ameliorated in both DSS-PN IL1KO and DSS-PN TNFRKO groups. Western analysis of the circadian transcription factor network revealed in WT mice DSS-PN significantly suppressed Reverbα, Bmal, Dbp, Per2 and Mtnr1b. With the exception of Dbp, DSS-PN mediated suppression was ameliorated by both IL1KO and TNFRKO. Intraperitoneal injection of IL-1ß or TNFα into WT mice increased serum AST and ALT and suppressed mRNA expression of Nr1d1, Arntl and Clock and increased Dbp and Per2. CONCLUSIONS: Altered expression of CR-dependent regulatory genes during PNAC accompanies cholestasis and is, in part, due to increased cytokine (IL-1ß and TNFα) production. Evaluation of the effects of modulating CR in PNAC thus deserves further investigation.


Asunto(s)
Traumatismos Abdominales , Colestasis , Animales , Ratones , Factor de Necrosis Tumoral alfa , Factores de Transcripción ARNTL , Genes Reguladores , Colestasis/genética , Nutrición Parenteral , Ácidos y Sales Biliares , ARN Mensajero
20.
SLAS Discov ; 28(4): 149-162, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37072070

RESUMEN

Macrophages play a pivotal role in drug discovery due to their key regulatory functions in health and disease. Overcoming the limited availability and donor variability of human monocyte-derived macrophages (MDMs), human induced pluripotent stem cell (iPSC)-derived macrophages (IDMs) could provide a promising tool for both disease modeling and drug discovery. To access large numbers of model cells for medium- to high-throughput application purposes, an upscaled protocol was established for differentiation of iPSCs into progenitor cells and subsequent maturation into functional macrophages. These IDM cells resembled MDMs both with respect to surface marker expression and phago- as well as efferocytotic function. A statistically robust high-content-imaging assay was developed to quantify the efferocytosis rate of IDMs and MDMs allowing for measurements both in the 384- and 1536-well microplate format. Validating the applicability of the assay, inhibitors of spleen tyrosine kinase (Syk) were shown to modulate efferocytosis in IDMs and MDMs with comparable pharmacology. The miniaturized cellular assay with the upscaled provision of macrophages opens new routes to pharmaceutical drug discovery in the context of efferocytosis-modulating substances.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Macrófagos , Diferenciación Celular , Descubrimiento de Drogas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA