RESUMEN
Early steps of cancer initiation and metastasis, while critical for understanding disease mechanisms, are difficult to visualize and study. Here, we describe an approach to study the processes of initiation, progression, and metastasis of prostate cancer (PC) in a genetically engineered RapidCaP mouse model, which combines whole-organ imaging by serial two-photon tomography (STPT) and post hoc thick-section immunofluorescent (IF) analysis. STPT enables the detection of single tumor-initiating cells within the entire prostate, and consequent IF analysis reveals a transition from normal to transformed epithelial tissue and cell escape from the tumor focus. STPT imaging of the liver and brain reveal the distribution of multiple metastatic foci in the liver and an early-stage metastatic cell invasion in the brain. This imaging and data analysis pipeline can be readily applied to other mouse models of cancer, offering a highly versatile whole-organ platform to study in situ mechanisms of cancer initiation and progression.
Asunto(s)
Metástasis de la Neoplasia/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Animales , Encéfalo/patología , Neoplasias Encefálicas/patología , Modelos Animales de Enfermedad , Inmunohistoquímica/métodos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/patología , Próstata/patología , Neoplasias de la Próstata/inmunología , Análisis de la Célula Individual , Tomografía Computarizada de Emisión/métodosRESUMEN
Rho-dependent proteins control assembly of the cytokinetic contractile ring, yet it remains unclear how those proteins guide ring closure and how they promote subsequent formation of a stable midbody ring. Citron kinase is one important component required for midbody ring formation but its mechanisms of action and relationship with Rho are controversial. Here, we conduct a structure-function analysis of the Drosophila Citron kinase, Sticky, in Schneider's S2 cells. We define two separable and redundant RhoGEF/Pebble-dependent inputs into Sticky recruitment to the nascent midbody ring and show that each input is subsequently required for retention at, and for the integrity of, the mature midbody ring. The first input is via an actomyosin-independent interaction between Sticky and Anillin, a key scaffold also required for midbody ring formation. The second input requires the Rho-binding domain of Sticky, whose boundaries we have defined. Collectively, these results show how midbody ring biogenesis depends on the coordinated actions of Sticky, Anillin, and Rho.
Asunto(s)
Proteínas Contráctiles/metabolismo , Proteínas de Drosophila/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Actomiosina/metabolismo , Animales , Línea Celular , Citocinesis/fisiología , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Interferencia de ARN , Factor Rho/metabolismo , Relación Estructura-ActividadRESUMEN
Neural cell fate specification is a multistep process in which stem cells undergo sequential changes in states, giving rise to particular lineages such as neurons and astrocytes. This process is accompanied by dynamic changes of chromatin and in transcription, thereby orchestrating lineage-specific gene expression programs. A pressing question is how these events are interconnected to sculpt cell fate. We show that altered chromatin due to loss of the chromatin remodeler Chd5 causes neural stem cell activation to occur ahead of time. This premature activation is accompanied by transcriptional derepression of ribosomal subunits, enhanced ribosome biogenesis, and increased translation. These untimely events deregulate cell fate decisions, culminating in the generation of excessive numbers of astrocytes at the expense of neurons. By monitoring the proneural factor Mash1, we further show that translational control is crucial for appropriate execution of cell fate specification, thereby providing new insight into the interplay between transcription and translation at the initial stages of neurogenesis.
RESUMEN
Mutations in IDH1 and IDH2 (encoding isocitrate dehydrogenase 1 and 2) drive the development of gliomas and other human malignancies. Mutant IDH1 induces epigenetic changes that promote tumorigenesis, but the scale and reversibility of these changes are unknown. Here, using human astrocyte and glioma tumorsphere systems, we generate a large-scale atlas of mutant-IDH1-induced epigenomic reprogramming. We characterize the reversibility of the alterations in DNA methylation, the histone landscape, and transcriptional reprogramming that occur following IDH1 mutation. We discover genome-wide coordinate changes in the localization and intensity of multiple histone marks and chromatin states. Mutant IDH1 establishes a CD24+ population with a proliferative advantage and stem-like transcriptional features. Strikingly, prolonged exposure to mutant IDH1 results in irreversible genomic and epigenetic alterations. Together, these observations provide unprecedented high-resolution molecular portraits of mutant-IDH1-dependent epigenomic reprogramming. These findings have substantial implications for understanding of mutant IDH function and for optimizing therapeutic approaches to targeting IDH-mutant tumors.
Asunto(s)
Cromatina/metabolismo , Epigénesis Genética , Isocitrato Deshidrogenasa/genética , Mutación , Transcriptoma , Animales , Astrocitos/metabolismo , Células Cultivadas , Metilación de ADN , Retrovirus Endógenos , Femenino , Perfilación de la Expresión Génica , Inestabilidad Genómica , Glioma/genética , Glioma/metabolismo , Código de Histonas , Humanos , Isocitrato Deshidrogenasa/metabolismo , Ratones Endogámicos NOD , Ratones SCID , FenotipoRESUMEN
A hallmark of advanced prostate cancer (PC) is the concomitant loss of PTEN and p53 function. To selectively eliminate such cells, we screened cytotoxic compounds on Pten-/-;Trp53-/- fibroblasts and their Pten-WT reference. Highly selective killing of Pten-null cells can be achieved by deguelin, a natural insecticide. Deguelin eliminates Pten-deficient cells through inhibition of mitochondrial complex I (CI). Five hundred-fold higher drug doses are needed to obtain the same killing of Pten-WT cells, even though deguelin blocks their electron transport chain equally well. Selectivity arises because mitochondria of Pten-null cells consume ATP through complex V, instead of producing it. The resulting glucose dependency can be exploited to selectively kill Pten-null cells with clinically relevant CI inhibitors, especially if they are lipophilic. In vivo, deguelin suppressed disease in our genetically engineered mouse model for metastatic PC. Our data thus introduce a vulnerability for highly selective targeting of incurable PC with inhibitors of CI.
Asunto(s)
Antineoplásicos/farmacología , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Rotenona/análogos & derivados , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Células Cultivadas , Complejo I de Transporte de Electrón/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Fibroblastos/metabolismo , Glucosa/metabolismo , Masculino , Ratones , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Rotenona/farmacología , Rotenona/uso terapéutico , Proteína p53 Supresora de Tumor/genéticaRESUMEN
The pacemaking activity of specialized tissues in the heart and gut results in lifelong rhythmic contractions. Here we describe a new syndrome characterized by Chronic Atrial and Intestinal Dysrhythmia, termed CAID syndrome, in 16 French Canadians and 1 Swede. We show that a single shared homozygous founder mutation in SGOL1, a component of the cohesin complex, causes CAID syndrome. Cultured dermal fibroblasts from affected individuals showed accelerated cell cycle progression, a higher rate of senescence and enhanced activation of TGF-ß signaling. Karyotypes showed the typical railroad appearance of a centromeric cohesion defect. Tissues derived from affected individuals displayed pathological changes in both the enteric nervous system and smooth muscle. Morpholino-induced knockdown of sgol1 in zebrafish recapitulated the abnormalities seen in humans with CAID syndrome. Our findings identify CAID syndrome as a novel generalized dysrhythmia, suggesting a new role for SGOL1 and the cohesin complex in mediating the integrity of human cardiac and gut rhythm.
Asunto(s)
Anomalías Múltiples/genética , Arritmias Cardíacas/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Enfermedades Intestinales/genética , Contracción Muscular/fisiología , Transducción de Señal/genética , Animales , Arritmias Cardíacas/patología , Ciclo Celular/genética , Sistema Nervioso Entérico/patología , Fibroblastos , Efecto Fundador , Tracto Gastrointestinal/fisiopatología , Técnicas de Silenciamiento del Gen , Humanos , Enfermedades Intestinales/fisiopatología , Cariotipificación , Contracción Muscular/genética , Músculo Liso Vascular/patología , Mutación/genética , Quebec , Síndrome , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra , CohesinasRESUMEN
During cytokinesis, closure of the actomyosin contractile ring (CR) is coupled to the formation of a midbody ring (MR), through poorly understood mechanisms. Using time-lapse microscopy of Drosophila melanogaster S2 cells, we show that the transition from the CR to the MR proceeds via a previously uncharacterized maturation process that requires opposing mechanisms of removal and retention of the scaffold protein Anillin. The septin cytoskeleton acts on the C terminus of Anillin to locally trim away excess membrane from the late CR/nascent MR via internalization, extrusion, and shedding, whereas the citron kinase Sticky acts on the N terminus of Anillin to retain it at the mature MR. Simultaneous depletion of septins and Sticky not only disrupted MR formation but also caused earlier CR oscillations, uncovering redundant mechanisms of CR stability that can partly explain the essential role of Anillin in this process. Our findings highlight the relatedness of the CR and MR and suggest that membrane removal is coordinated with CR disassembly.