Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(19): e2119964119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35503913

RESUMEN

Using a series of multiheme cytochromes, the metal-reducing bacterium Shewanella oneidensis MR-1 can perform extracellular electron transfer (EET) to respire redox-active surfaces, including minerals and electrodes outside the cell. While the role of multiheme cytochromes in transporting electrons across the cell wall is well established, these cytochromes were also recently found to facilitate long-distance (micrometer-scale) redox conduction along outer membranes and across multiple cells bridging electrodes. Recent studies proposed that long-distance conduction arises from the interplay of electron hopping and cytochrome diffusion, which allows collisions and electron exchange between cytochromes along membranes. However, the diffusive dynamics of the multiheme cytochromes have never been observed or quantified in vivo, making it difficult to assess their hypothesized contribution to the collision-exchange mechanism. Here, we use quantum dot labeling, total internal reflection fluorescence microscopy, and single-particle tracking to quantify the lateral diffusive dynamics of the outer membrane-associated decaheme cytochromes MtrC and OmcA, two key components of EET in S. oneidensis. We observe confined diffusion behavior for both quantum dot-labeled MtrC and OmcA along cell surfaces (diffusion coefficients DMtrC = 0.0192 ± 0.0018 µm2/s, DOmcA = 0.0125 ± 0.0024 µm2/s) and the membrane extensions thought to function as bacterial nanowires. We find that these dynamics can trace a path for electron transport via overlap of cytochrome trajectories, consistent with the long-distance conduction mechanism. The measured dynamics inform kinetic Monte Carlo simulations that combine direct electron hopping and redox molecule diffusion, revealing significant electron transport rates along cells and membrane nanowires.


Asunto(s)
Shewanella , Imagen Individual de Molécula , Membrana Celular/metabolismo , Citocromos/metabolismo , Transporte de Electrón , Oxidación-Reducción , Shewanella/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161255

RESUMEN

At marine methane seeps, vast quantities of methane move through the shallow subseafloor, where it is largely consumed by microbial communities. This process plays an important role in global methane dynamics, but we have yet to identify all of the methane sinks in the deep sea. Here, we conducted a continental-scale survey of seven geologically diverse seafloor seeps and found that carbonate rocks from all sites host methane-oxidizing microbial communities with substantial methanotrophic potential. In laboratory-based mesocosm incubations, chimney-like carbonates from the newly described Point Dume seep off the coast of Southern California exhibited the highest rates of anaerobic methane oxidation measured to date. After a thorough analysis of physicochemical, electrical, and biological factors, we attribute this substantial metabolic activity largely to higher cell density, mineral composition, kinetic parameters including an elevated Vmax, and the presence of specific microbial lineages. Our data also suggest that other features, such as electrical conductance, rock particle size, and microbial community alpha diversity, may influence a sample's methanotrophic potential, but these factors did not demonstrate clear patterns with respect to methane oxidation rates. Based on the apparent pervasiveness within seep carbonates of microbial communities capable of performing anaerobic oxidation of methane, as well as the frequent occurrence of carbonates at seeps, we suggest that rock-hosted methanotrophy may be an important contributor to marine methane consumption.


Asunto(s)
Carbonatos/química , Fenómenos Geológicos , Metano/metabolismo , Microbiota , Agua de Mar/microbiología , Geografía , Cinética , Microbiota/genética , Oxidación-Reducción , ARN Ribosómico 16S/genética
3.
EMBO J ; 38(14): e100957, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31304634

RESUMEN

The self-assembly of cellular macromolecular machines such as the bacterial flagellar motor requires the spatio-temporal synchronization of gene expression with proper protein localization and association of dozens of protein components. In Salmonella and Escherichia coli, a sequential, outward assembly mechanism has been proposed for the flagellar motor starting from the inner membrane, with the addition of each new component stabilizing the previous one. However, very little is known about flagellar disassembly. Here, using electron cryo-tomography and sub-tomogram averaging of intact Legionella pneumophila, Pseudomonas aeruginosa, and Shewanella oneidensis cells, we study flagellar motor disassembly and assembly in situ. We first show that motor disassembly results in stable outer membrane-embedded sub-complexes. These sub-complexes consist of the periplasmic embellished P- and L-rings, and bend the membrane inward while it remains apparently sealed. Additionally, we also observe various intermediates of the assembly process including an inner-membrane sub-complex consisting of the C-ring, MS-ring, and export apparatus. Finally, we show that the L-ring is responsible for reshaping the outer membrane, a crucial step in the flagellar assembly process.


Asunto(s)
Bacterias/citología , Proteínas Bacterianas/metabolismo , Flagelos/ultraestructura , Bacterias/metabolismo , Bacterias/ultraestructura , Membrana Externa Bacteriana/metabolismo , Tomografía con Microscopio Electrónico , Escherichia coli/citología , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Flagelos/metabolismo , Legionella pneumophila/citología , Legionella pneumophila/metabolismo , Legionella pneumophila/ultraestructura , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/ultraestructura , Shewanella/citología , Shewanella/metabolismo , Shewanella/ultraestructura
4.
J Chem Phys ; 159(14)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37811828

RESUMEN

Metal-reducing bacteria have adapted the ability to respire extracellular solid surfaces instead of soluble oxidants. This process requires an electron transport pathway that spans from the inner membrane, across the periplasm, through the outer membrane, and to an external surface. Multiheme cytochromes are the primary machinery for moving electrons through this pathway. Recent studies show that the chiral-induced spin selectivity (CISS) effect is observable in some of these proteins extracted from the model metal-reducing bacteria, Shewanella oneidensis MR-1. It was hypothesized that the CISS effect facilitates efficient electron transport in these proteins by coupling electron velocity to spin, thus reducing the probability of backscattering. However, these studies focused exclusively on the cell surface electron conduits, and thus, CISS has not been investigated in upstream electron transfer components such as the membrane-associated MtrA, or periplasmic proteins such as small tetraheme cytochrome (STC). By using conductive probe atomic force microscopy measurements of protein monolayers adsorbed onto ferromagnetic substrates, we show that electron transport is spin selective in both MtrA and STC. Moreover, we have determined the spin polarization of MtrA to be ∼77% and STC to be ∼35%. This disparity in spin polarizations could indicate that spin selectivity is length dependent in heme proteins, given that MtrA is approximately two times longer than STC. Most significantly, our study indicates that spin-dependent interactions affect the entire extracellular electron transport pathway.


Asunto(s)
Electrones , Periplasma , Transporte de Electrón , Oxidación-Reducción , Periplasma/metabolismo , Metales , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(33): 20171-20179, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747561

RESUMEN

Extracellular electron transfer (EET) allows microorganisms to gain energy by linking intracellular reactions to external surfaces ranging from natural minerals to the electrodes of bioelectrochemical renewable energy technologies. In the past two decades, electrochemical techniques have been used to investigate EET in a wide range of microbes, with emphasis on dissimilatory metal-reducing bacteria, such as Shewanella oneidensis MR-1, as model organisms. However, due to the typically bulk nature of these techniques, they are unable to reveal the subpopulation variation in EET or link the observed electrochemical currents to energy gain by individual cells, thus overlooking the potentially complex spatial patterns of activity in bioelectrochemical systems. Here, to address these limitations, we use the cell membrane potential as a bioenergetic indicator of EET by S. oneidensis MR-1 cells. Using a fluorescent membrane potential indicator during in vivo single-cell-level fluorescence microscopy in a bioelectrochemical reactor, we demonstrate that membrane potential strongly correlates with EET. Increasing electrode potential and associated EET current leads to more negative membrane potential. This EET-induced membrane hyperpolarization is spatially limited to cells in contact with the electrode and within a near-electrode zone (<30 µm) where the hyperpolarization decays with increasing cell-electrode distance. The high spatial and temporal resolution of the reported technique can be used to study the single-cell-level dynamics of EET not only on electrode surfaces, but also during respiration of other solid-phase electron acceptors.


Asunto(s)
Membrana Externa Bacteriana/fisiología , Transporte de Electrón/fisiología , Potenciales de la Membrana/fisiología , Shewanella/fisiología , Benzotiazoles/metabolismo , Fenómenos Electrofisiológicos , Colorantes Fluorescentes , Análisis de la Célula Individual/métodos , Grabación en Video
6.
Mol Microbiol ; 115(6): 1069-1079, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33200455

RESUMEN

Shewanella oneidensis is a dissimilatory metal reducing bacterium and model for extracellular electron transfer (EET), a respiratory mechanism in which electrons are transferred out of the cell. In the last 10 years, migration to insoluble electron acceptors for EET has been shown to be nonrandom and tactic, seemingly in the absence of molecular or energy gradients that typically allow for taxis. As the ability to sense, locate, and respire electrodes has applications in bioelectrochemical technology, a better understanding of taxis in S. oneidensis is needed. While the EET conduits of S. oneidensis have been studied extensively, its taxis pathways and their interplay with EET are not yet understood, making investigation into taxis phenomena nontrivial. Since S. oneidensis is a member of an EET-encoding clade, the genetic circuitry of taxis to insoluble acceptors may be conserved. We performed a bioinformatic analysis of Shewanella genomes to identify S. oneidensis chemotaxis orthologs conserved in the genus. In addition to the previously reported core chemotaxis gene cluster, we identify several other conserved proteins in the taxis signaling pathway. We present the current evidence for the two proposed models of EET taxis, "electrokinesis" and flavin-mediated taxis, and highlight key areas in need of further investigation.


Asunto(s)
Quimiotaxis/fisiología , Transporte de Electrón/fisiología , Shewanella/metabolismo , Técnicas Electroquímicas , Electrodos/microbiología , Electrones , Metales/metabolismo , Familia de Multigenes/genética , Oxidación-Reducción , Shewanella/genética , Transducción de Señal/fisiología
7.
Phys Biol ; 18(5)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-33462162

RESUMEN

Bacterial biofilms are communities of bacteria that exist as aggregates that can adhere to surfaces or be free-standing. This complex, social mode of cellular organization is fundamental to the physiology of microbes and often exhibits surprising behavior. Bacterial biofilms are more than the sum of their parts: single-cell behavior has a complex relation to collective community behavior, in a manner perhaps cognate to the complex relation between atomic physics and condensed matter physics. Biofilm microbiology is a relatively young field by biology standards, but it has already attracted intense attention from physicists. Sometimes, this attention takes the form of seeing biofilms as inspiration for new physics. In this roadmap, we highlight the work of those who have taken the opposite strategy: we highlight the work of physicists and physical scientists who use physics to engage fundamental concepts in bacterial biofilm microbiology, including adhesion, sensing, motility, signaling, memory, energy flow, community formation and cooperativity. These contributions are juxtaposed with microbiologists who have made recent important discoveries on bacterial biofilms using state-of-the-art physical methods. The contributions to this roadmap exemplify how well physics and biology can be combined to achieve a new synthesis, rather than just a division of labor.


Asunto(s)
Adhesión Bacteriana/fisiología , Fenómenos Fisiológicos Bacterianos , Biopelículas , Percepción de Quorum/fisiología , Biopelículas/crecimiento & desarrollo
8.
Proc Natl Acad Sci U S A ; 115(14): E3246-E3255, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29555764

RESUMEN

Bacterial nanowires have garnered recent interest as a proposed extracellular electron transfer (EET) pathway that links the bacterial electron transport chain to solid-phase electron acceptors away from the cell. Recent studies showed that Shewanella oneidensis MR-1 produces outer membrane (OM) and periplasmic extensions that contain EET components and hinted at their possible role as bacterial nanowires. However, their fine structure and distribution of cytochrome electron carriers under native conditions remained unclear, making it difficult to evaluate the potential electron transport (ET) mechanism along OM extensions. Here, we report high-resolution images of S. oneidensis OM extensions, using electron cryotomography (ECT). We developed a robust method for fluorescence light microscopy imaging of OM extension growth on electron microscopy grids and used correlative light and electron microscopy to identify and image the same structures by ECT. Our results reveal that S. oneidensis OM extensions are dynamic chains of interconnected outer membrane vesicles (OMVs) with variable dimensions, curvature, and extent of tubulation. Junction densities that potentially stabilize OMV chains are seen between neighboring vesicles in cryotomograms. By comparing wild type and a cytochrome gene deletion mutant, our ECT results provide the likely positions and packing of periplasmic and outer membrane proteins consistent with cytochromes. Based on the observed cytochrome packing density, we propose a plausible ET path along the OM extensions involving a combination of direct hopping and cytochrome diffusion. A mean-field calculation, informed by the observed ECT cytochrome density, supports this proposal by revealing ET rates on par with a fully packed cytochrome network.


Asunto(s)
Microscopía por Crioelectrón/métodos , Citocromos/metabolismo , Electrones , Nanocables/ultraestructura , Shewanella/metabolismo , Shewanella/ultraestructura , Transporte de Electrón , Microscopía Fluorescente
9.
J Am Chem Soc ; 141(49): 19198-19202, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31702906

RESUMEN

Multiheme cytochromes, located on the bacterial cell surface, function as long-distance (>10 nm) electron conduits linking intracellular reactions to external surfaces. This extracellular electron transfer process, which allows microorganisms to gain energy by respiring solid redox-active minerals, also facilitates the wiring of cells to electrodes. While recent studies have suggested that a chiral induced spin selectivity effect is linked to efficient electron transmission through biomolecules, this phenomenon has not been investigated in extracellular electron conduits. Using magnetic conductive probe atomic force microscopy, Hall voltage measurements, and spin-dependent electrochemistry of the decaheme cytochromes MtrF and OmcA from the metal-reducing bacterium Shewanella oneidensis MR-1, we show that electron transport through these extracellular conduits is spin-selective. Our study has implications for understanding how spin-dependent interactions and magnetic fields may control electron transport across biotic-abiotic interfaces in both natural and biotechnological systems.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Grupo Citocromo c/química , Transporte de Electrón , Shewanella/química , Electroquímica , Electrodos , Espectroscopía de Resonancia por Spin del Electrón , Hemo/química , Campos Magnéticos , Microscopía de Fuerza Atómica
10.
J Am Chem Soc ; 140(32): 10085-10089, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30056703

RESUMEN

Multiheme cytochromes function as extracellular electron transfer (EET) conduits that extend the metabolic reach of microorganisms to external solid surfaces. These conduits are also proposed to facilitate long-distance electron transport along cellular membranes and across multiple cells. Here we report electrochemical gating measurements of Shewanella oneidensis MR-1 cells linking interdigitated electrodes. The dependence of the source-drain current on gate potential demonstrates a redox conduction mechanism, which we link to the presence of multiheme cytochromes of the Mtr pathway. We also find that the measured thermal activation energy of 0.29 ± 0.03 eV is consistent with these obtained from electron hopping calculations through the S. oneidensis Mtr outer-membrane decaheme cytochromes. Our measurements and calculations have implications for understanding and controlling micrometer-scale electron transport in microbial systems.


Asunto(s)
Membrana Celular/fisiología , Citocromos/metabolismo , Shewanella/fisiología , Simulación por Computador , Citocromos/química , Electroquímica , Transporte de Electrón , Oxidación-Reducción , Temperatura
11.
Nature ; 491(7423): 218-21, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-23103872

RESUMEN

Oxygen consumption in marine sediments is often coupled to the oxidation of sulphide generated by degradation of organic matter in deeper, oxygen-free layers. Geochemical observations have shown that this coupling can be mediated by electric currents carried by unidentified electron transporters across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living, electrical cables add a new dimension to the understanding of interactions in nature and may find use in technology development.


Asunto(s)
Deltaproteobacteria/metabolismo , Conductividad Eléctrica , Organismos Acuáticos/citología , Organismos Acuáticos/metabolismo , Organismos Acuáticos/ultraestructura , Deltaproteobacteria/citología , Deltaproteobacteria/ultraestructura , Dinamarca , Transporte de Electrón , Sedimentos Geológicos/microbiología , Vidrio , Microesferas , Datos de Secuencia Molecular , Tipificación Molecular , Océanos y Mares , Oxígeno/metabolismo , Porosidad , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Sulfuros/metabolismo
12.
Angew Chem Int Ed Engl ; 57(23): 6805-6809, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29663609

RESUMEN

Shewanella oneidensis MR-1 gains energy by extracellular electron transfer to solid surfaces. They employ c-type cytochromes in two Mtr transmembrane complexes, forming a multiheme wire for electron transport across the cellular outer membrane. We investigated electron- and hole-transfer mechanisms in the external terminal of the two complexes, MtrC and MtrF. Comparison of computed redox potentials with previous voltammetry experiments in distinct environments (isolated and electrode-bound conditions of PFV or in vivo) suggests that these systems function in different regimes depending on the environment. Analysis of redox potential shifts in different regimes indicates strong coupling between the hemes via an interplay between direct Coulomb and indirect interactions through local structural reorganization. The latter results in the screening of Coulomb interactions and explains poor correlation of the strength of the heme-to-heme interactions with the distance between the hemes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Grupo Citocromo c/metabolismo , Shewanella/metabolismo , Proteínas Bacterianas/química , Grupo Citocromo c/química , Transporte de Electrón , Hemo/química , Hemo/metabolismo , Modelos Moleculares , Oxidación-Reducción , Shewanella/química
13.
Proc Natl Acad Sci U S A ; 111(35): 12883-8, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25143589

RESUMEN

Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/fisiología , Nanocables/ultraestructura , Periplasma/fisiología , Shewanella/metabolismo , Shewanella/ultraestructura , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Biocombustibles , Grupo Citocromo c/genética , Grupo Citocromo c/metabolismo , Transporte de Electrón/fisiología , Regulación Bacteriana de la Expresión Génica , Microscopía de Fuerza Atómica , Modelos Químicos , Oxidación-Reducción , Periplasma/genética
14.
Appl Environ Microbiol ; 82(17): 5428-43, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27342561

RESUMEN

UNLABELLED: In limiting oxygen as an electron acceptor, the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 rapidly forms nanowires, extensions of its outer membrane containing the cytochromes MtrC and OmcA needed for extracellular electron transfer. RNA sequencing (RNA-Seq) analysis was employed to determine differential gene expression over time from triplicate chemostat cultures that were limited for oxygen. We identified 465 genes with decreased expression and 677 genes with increased expression. The coordinated increased expression of heme biosynthesis, cytochrome maturation, and transport pathways indicates that S. oneidensis MR-1 increases cytochrome production, including the transcription of genes encoding MtrA, MtrC, and OmcA, and transports these decaheme cytochromes across the cytoplasmic membrane during electron acceptor limitation and nanowire formation. In contrast, the expression of the mtrA and mtrC homologs mtrF and mtrD either remains unaffected or decreases under these conditions. The ompW gene, encoding a small outer membrane porin, has 40-fold higher expression during oxygen limitation, and it is proposed that OmpW plays a role in cation transport to maintain electrical neutrality during electron transfer. The genes encoding the anaerobic respiration regulator cyclic AMP receptor protein (CRP) and the extracytoplasmic function sigma factor RpoE are among the transcription factor genes with increased expression. RpoE might function by signaling the initial response to oxygen limitation. Our results show that RpoE activates transcription from promoters upstream of mtrC and omcA The transcriptome and mutant analyses of S. oneidensis MR-1 nanowire production are consistent with independent regulatory mechanisms for extending the outer membrane into tubular structures and for ensuring the electron transfer function of the nanowires. IMPORTANCE: Shewanella oneidensis MR-1 has the capacity to transfer electrons to its external surface using extensions of the outer membrane called bacterial nanowires. These bacterial nanowires link the cell's respiratory chain to external surfaces, including oxidized metals important in bioremediation, and explain why S. oneidensis can be utilized as a component of microbial fuel cells, a form of renewable energy. In this work, we use differential gene expression analysis to focus on which genes function to produce the nanowires and promote extracellular electron transfer during oxygen limitation. Among the genes that are expressed at high levels are those encoding cytochrome proteins necessary for electron transfer. Shewanella coordinates the increased expression of regulators, metabolic pathways, and transport pathways to ensure that cytochromes efficiently transfer electrons along the nanowires.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Nanocables/química , Shewanella/genética , Shewanella/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Fuentes de Energía Bioeléctrica , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Transporte de Electrón , Oxidación-Reducción , Shewanella/química
15.
Phys Chem Chem Phys ; 17(48): 32564-70, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26611733

RESUMEN

Microbial biofilms grown utilizing electrodes as metabolic electron acceptors or donors are a new class of biomaterials with distinct electronic properties. Here we report that electron transport through living electrode-grown Geobacter sulfurreducens biofilms is a thermally activated process with incoherent redox conductivity. The temperature dependency of this process is consistent with electron-transfer reactions involving hemes of c-type cytochromes known to play important roles in G. sulfurreducens extracellular electron transport. While incoherent redox conductivity is ubiquitous in biological systems at molecular-length scales, it is unprecedented over distances it appears to occur through living G. sulfurreducens biofilms, which can exceed 100 microns in thickness.


Asunto(s)
Biopelículas , Conductividad Eléctrica , Transporte de Electrón , Geobacter/metabolismo , Temperatura
16.
Nano Lett ; 13(6): 2407-11, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23701405

RESUMEN

The study of electrical transport in biomolecular materials is critical to our fundamental understanding of physiology and to the development of practical bioelectronics applications. In this study, we investigated the electronic transport characteristics of Shewanella oneidensis MR-1 nanowires by conducting-probe atomic force microscopy (CP-AFM) and by constructing field-effect transistors (FETs) based on individual S. oneidensis nanowires. Here we show that S. oneidensis nanowires exhibit p-type, tunable electronic behavior with a field-effect mobility on the order of 10(-1) cm(2)/(V s), comparable to devices based on synthetic organic semiconductors. This study opens up opportunities to use such bacterial nanowires as a new semiconducting biomaterial for making bioelectronics and to enhance the power output of microbial fuel cells through engineering the interfaces between metallic electrodes and bacterial nanowires.


Asunto(s)
Nanocables , Shewanella/fisiología , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo
17.
Elife ; 122024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207443

RESUMEN

Filamentous multicellular cable bacteria perform centimeter-scale electron transport in a process that couples oxidation of an electron donor (sulfide) in deeper sediment to the reduction of an electron acceptor (oxygen or nitrate) near the surface. While this electric metabolism is prevalent in both marine and freshwater sediments, detailed electronic measurements of the conductivity previously focused on the marine cable bacteria (Candidatus Electrothrix), rather than freshwater cable bacteria, which form a separate genus (Candidatus Electronema) and contribute essential geochemical roles in freshwater sediments. Here, we characterize the electron transport characteristics of Ca. Electronema cable bacteria from Southern California freshwater sediments. Current-voltage measurements of intact cable filaments bridging interdigitated electrodes confirmed their persistent conductivity under a controlled atmosphere and the variable sensitivity of this conduction to air exposure. Electrostatic and conductive atomic force microscopies mapped out the characteristics of the cell envelope's nanofiber network, implicating it as the conductive pathway in a manner consistent with previous findings in marine cable bacteria. Four-probe measurements of microelectrodes addressing intact cables demonstrated nanoampere currents up to 200 µm lengths at modest driving voltages, allowing us to quantify the nanofiber conductivity at 0.1 S/cm for freshwater cable bacteria filaments under our measurement conditions. Such a high conductivity can support the remarkable sulfide-to-oxygen electrical currents mediated by cable bacteria in sediments. These measurements expand the knowledgebase of long-distance electron transport to the freshwater niche while shedding light on the underlying conductive network of cable bacteria.


Asunto(s)
Agua Dulce , Transporte de Electrón , Agua Dulce/microbiología , Sedimentos Geológicos/microbiología , Sulfuros/metabolismo , California , Conductividad Eléctrica , Oxidación-Reducción
18.
ACS Synth Biol ; 13(5): 1467-1476, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38696739

RESUMEN

Optogenetics is a powerful tool for spatiotemporal control of gene expression. Several light-inducible gene regulators have been developed to function in bacteria, and these regulatory circuits have been ported to new host strains. Here, we developed and adapted a red-light-inducible transcription factor for Shewanella oneidensis. This regulatory circuit is based on the iLight optogenetic system, which controls gene expression using red light. A thermodynamic model and promoter engineering were used to adapt this system to achieve differential gene expression in light and dark conditions within a S. oneidensis host strain. We further improved the iLight optogenetic system by adding a repressor to invert the genetic circuit and activate gene expression under red light illumination. The inverted iLight genetic circuit was used to control extracellular electron transfer within S. oneidensis. The ability to use both red- and blue-light-induced optogenetic circuits simultaneously was also demonstrated. Our work expands the synthetic biology capabilities in S. oneidensis, which could facilitate future advances in applications with electrogenic bacteria.


Asunto(s)
Luz , Optogenética , Regiones Promotoras Genéticas , Shewanella , Shewanella/genética , Shewanella/metabolismo , Optogenética/métodos , Transporte de Electrón , Regiones Promotoras Genéticas/genética , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Redes Reguladoras de Genes/genética , Biología Sintética/métodos
19.
Proc Natl Acad Sci U S A ; 107(42): 18127-31, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20937892

RESUMEN

Bacterial nanowires are extracellular appendages that have been suggested as pathways for electron transport in phylogenetically diverse microorganisms, including dissimilatory metal-reducing bacteria and photosynthetic cyanobacteria. However, there has been no evidence presented to demonstrate electron transport along the length of bacterial nanowires. Here we report electron transport measurements along individually addressed bacterial nanowires derived from electron-acceptor-limited cultures of the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. Transport along the bacterial nanowires was independently evaluated by two techniques: (i) nanofabricated electrodes patterned on top of individual nanowires, and (ii) conducting probe atomic force microscopy at various points along a single nanowire bridging a metallic electrode and the conductive atomic force microscopy tip. The S. oneidensis MR-1 nanowires were found to be electrically conductive along micrometer-length scales with electron transport rates up to 10(9)/s at 100 mV of applied bias and a measured resistivity on the order of 1 Ω·cm. Mutants deficient in genes for c-type decaheme cytochromes MtrC and OmcA produce appendages that are morphologically consistent with bacterial nanowires, but were found to be nonconductive. The measurements reported here allow for bacterial nanowires to serve as a viable microbial strategy for extracellular electron transport.


Asunto(s)
Electricidad , Shewanella/fisiología , Electrodos , Microscopía de Fuerza Atómica , Nanocables
20.
ChemElectroChem ; 10(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-37649707

RESUMEN

Extracellular electron transfer (EET) is a process that microorganisms use to reduce or oxidize external insoluble electron acceptors or donors. Much of our mechanistic understanding of this process is derived from studies of transmembrane cytochrome complexes and extracellular redox shuttles that mediate outward EET to anodes and external electron acceptors. In contrast, there are knowledge gaps concerning the reverse process of inward EET from external electron donors to cells. Here, we describe a role for soluble iron (exogenous FeCl2) in enhancing EET from cathodes to the model EET bacterium Shewanella oneidensis MR-1, with fumarate serving as the intracellular electron acceptor. This iron concentration-dependent electron uptake was eradicated upon addition of an iron chelator and occurred only in the presence of fumarate reductase, confirming an electron pathway from cathodes to this periplasmic enzyme. Moreover, S. oneidensis mutants lacking specific outer membrane and periplasmic cytochromes exhibited significantly decreased current levels relative to wild-type. These results indicate that soluble iron can function as an electron carrier to the EET machinery of S. oneidensis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA