Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Rev ; 121(8): 5042-5092, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33792299

RESUMEN

Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.

2.
Bioconjug Chem ; 29(12): 3987-3992, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30452234

RESUMEN

Macrocyclization of linear peptides imparts improved stability to enzymatic degradation and increases potency of function. Many successful macrocyclization of peptides both in solution and on-resin have been achieved but are limited in scope as they lack selectivity, require long reaction times, or necessitate heat. To overcome these drawbacks a robust and facile strategy was developed employing thiol-Michael click chemistry via an N-methyl vinyl sulfonamide. We demonstrate its balance of reactivity and high stability through FTIR model kinetic studies, reaching 88% conversion over 30 min, and NMR stability studies, revealing no apparent degradation over an 8 day period in basic conditions. Using a commercially available reagent, 2-chloroethane sulfonyl chloride, the cell adhesion peptide, RGDS, was functionalized and macrocyclized on-resin with a relative efficiency of over 95%. The simplistic nature of this process demonstrates the effectiveness of vinyl sulfonamides as a thiol-Michael click acceptor and its applicability to many other bioconjugation applications.


Asunto(s)
Química Clic , Compuestos Macrocíclicos/química , Péptidos/química , Compuestos de Sulfhidrilo/química , Sulfonamidas/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Ciclización , Cinética , Modelos Químicos , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier
3.
Phys Chem Chem Phys ; 18(36): 25504-25511, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27711587

RESUMEN

The kinetic behaviour of the photo-induced copper(i) catalyzed azide-alkyne cycloaddition (CuAAC) reaction was studied in detail using real-time Fourier transform infrared (FTIR) spectroscopy on both a solvent-based monofunctional and a neat polymer network forming system. The results in the solvent-based system showed near first-order kinetics on copper and photoinitiator concentrations up to a threshold value in which the kinetics switch to zeroth-order. This kinetic shift shows that the photo-CuAAC reaction is not susceptible from side reactions such as copper disproportionation, copper(i) reduction, and radical termination at the early stages of the reaction. The overall reaction rate and conversion is highly dependent on the initial concentrations of photoinitiator and copper(ii) as well as their relative ratios. The conversion was decreased when an excess of photoinitiator was utilized compared to its threshold value. Interestingly, the reaction showed an induction period at relatively low intensities. The induction period is decreased by increasing light intensity and photoinitiator concentration. The reaction trends and limitations were further observed in a solventless polymer network forming system, exhibiting a similar copper and photoinitiator threshold behaviour.

4.
Polym Chem ; 9(38): 4772-4780, 2018 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31031838

RESUMEN

The kinetics of photoinduced copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) polymerizations were assessed as a function of copper(II) amine-based ligands. Copper(II) bromide ligated with 1,1,4,7,10,10-hexamethylenetetramine (HMTETA) exhibited the fastest kinetics in both Norrish type(I) and type(II) photoinitiating systems. A characteristic induction period is observed with these polymerizations and is manipulated by adding an external tertiary amine in Norrish Type(II) photoinitating systems or by changing the anion of the copper(II) salt. Halides, specifically bromide and chloride, exhibit the fastest kinetics with the smallest induction period in comparison with organic anions, such as bistriflimide and triflate. The temporal control of the photo-CuAAC polymerization is affected by pre-ligation of the copper catalyst, by the presence of certain anions such as acetate, and by specific ligands such as tetramethylethylenediamine (TMEDA).

5.
Chem Commun (Camb) ; 52(69): 10574-7, 2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27499057

RESUMEN

A visible-light (470 nm wavelength) sensitive Type II photoinitiator system is developed for bulk Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions in crosslinked networks. The accelerated photopolymerization eliminates UV-mediated azide decomposition allowing for the formation of defect-free glassy networks which exhibit a narrow glass transition temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA