Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 144(18): 184503, 2016 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-27179491

RESUMEN

The excited state relaxation dynamics of the solvated electron in H2O and D2O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H2O and 102 ± 8 fs in D2O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

2.
J Chem Phys ; 142(23): 234501, 2015 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-26093562

RESUMEN

The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

3.
J Phys Chem Lett ; 11(23): 10081-10087, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33179935

RESUMEN

Extensive transient absorption studies on hybrid organic-inorganic lead halide perovskites have elucidated many optical properties important for their device performance. Despite the enormous progress, the derivative shaped photoinduced absorption feature in transient spectra that is above the bandgap has many explanations, including the photoinduced Stark effect, where the bandgap is blue shifted due to a local electric field generated by charges. In this work, we employ broad band transient absorption and two-dimensional electronic spectroscopy (2DES) to examine the early transient events after photoexcitation of [CH(NH2)2]0.83Cs0.17PbBr3 (FA0.83Cs0.17PbBr3). 2DES resolves a photomodulation feature at the excitation energy of the exciton, suggesting the presence of a dipole field created by a polaron pair shifting the exciton transition to higher energies. As this polaron pair dissociates over 200 fs, the exciton transition shifts to higher energies over the same time scale, evidenced by the 2DES diagonal energy spectra. Given that the observations are well explained in terms of the Stark effect, our work provides extra grounds to support the Stark effect assignment of the above-gap photoinduced absorption. Furthermore, our study reports on the time scale of charge generation, contributing to the fundamental understanding of mixed-cation lead bromide perovskite photophysics.

4.
J Phys Chem Lett ; 10(3): 419-426, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30630317

RESUMEN

Solution-processed perovskite quantum wells have been used to fabricate increasingly efficient and stable optoelectronic devices. Little is known about the dynamics of photogenerated excitons in perovskite quantum wells within the first few hundred femtoseconds-a crucial time scale on which energy and charge transfer processes may compete. Here we use ultrafast transient absorption and two-dimensional electronic spectroscopy to clarify the movement of excitons and charges in reduced-dimensional perovskite solids. We report excitonic funneling from strongly to weakly confined perovskite quantum wells within 150 fs, facilitated by strong spectral overlap and orientational alignment among neighboring wells. This energy transfer happens on time scales orders of magnitude faster than charge transfer, which we find to occur instead over 10s to 100s of picoseconds. Simulations of both Förster-type interwell exciton transfer and free carrier charge transfer are in agreement with these experimental findings, with theoretical exciton transfer calculated to occur in 100s of femtoseconds.

5.
J Phys Chem Lett ; 8(16): 3895-3901, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28767258

RESUMEN

Quasi-two-dimensional lead halide perovskites, MAn-1PbnX3n+1, are quantum confined materials with an ever-developing range of optoelectronic device applications. Like other semiconductors, the correlated motion of electrons and holes dominates the material's response to optical excitation influencing its electrical and optical properties such as charge formation and mobility. However, the effects of many-particle correlation have been relatively unexplored in perovskite because of the difficultly of probing these states directly. Here, we use double quantum coherence spectroscopy to explore the formation and localization of multiexciton states in these materials. Between the most confined domains, we demonstrate the presence of an interwell, two-exciton excited state. This demonstrates that the four-body Coulomb interaction electronically couples neighboring wells despite weak electron/hole hybridization in these materials. Additionally, in contrast with inorganic semiconductor quantum wells, we demonstrate a rapid decrease in the dephasing time as wells become thicker, indicating that exciton delocalization is not limited by structural inhomogeneity in low-dimensional perovskite.

6.
Science ; 342(6165): 1496-9, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24357314

RESUMEN

The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA