Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 33(23): 5796-5802, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28521100

RESUMEN

Nanoparticles possessing functional groups that can be readily conjugated (e.g., through click chemistry) are important precursors for the preparation of customized nanohybrid products. Such nanoparticles, if they are stable against agglomeration, are easily dispersible and have well-defined surface chemistry and size. As click-ready reagents, they can be stored until their time of use and then simply dispersed and reacted with an appropriate substrate. Gold nanoparticles (AuNPs) are excellent candidates for this purpose, and some clickable gold nanoparticles have been developed; however, AuNPs for use in aqueous systems are often prepared through difficult multistep processes and/or can be poorly dispersible in water. Here we report a single-step synthesis of clickable, water-dispersible AuNPs. The synthesis yields uniform, 3.5 nm diameter cores coated with a well-defined molecular ligand shell that makes the AuNPs stable and dispersible in water. The AuNP mixed ligand shell consists of hydroxyl-terminated ethylene glycol-based ligands to promote dispersion in water and a small number of azide-terminated ligands that readily undergo click reactions with alkynes. The use of a mesofluidic reactor affords fine control over the core size and ligand shell composition and ensures reproducible results (e.g., less than 0.1 nm variation in core diameter between batches). The purified reagents were successfully coupled to a variety of alkyne-containing substrates using both Cu-catalyzed and strain-promoted click reactions. Particle size, morphology, stability, and surface composition were thoroughly characterized using small-angle X-ray scattering, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis, and 1H NMR before and after the click reactions. Both the parent nanoparticles and their click chemistry products are stable during storage and remained dispersible for over a year in water, suggesting their potential for environmental, biological, and biomedical applications.

2.
Langmuir ; 31(43): 11886-94, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26436612

RESUMEN

A convenient, single-step synthesis is reported that produces ligand-stabilized, water-soluble gold nanoparticles (AuNPs) with subnanometer-level precision of the mean core diameter over a range of 2-9 nm for a series of desired surface chemistries. The synthesis involves the reduction of a Au(III) species with sodium borohydride in the presence of a functionalized alkyl thiosulfate (Bunte salt) to yield thiolate-protected AuNPs. A key advantage of this synthesis is that simply adjusting the pH of the gold salt solution leads to control over the AuNP core size. The speciation of Au(III), and therefore the kinetics for its reduction and the core size produced, depends upon pH. The use of pH as the sole variable to control core size is a more reliable and convenient method than traditional approaches that rely on adjusting the concentrations and ratios of ligand, metal salt, and reducing agent. The average core size increased as the pH was raised for each ligand studied. Because the influence of pH was different for each of the ligands, working curves were plotted for each ligand to identify conditions to synthesize particles with specific, targeted core diameters. Using this approach, reaction conditions can be rapidly optimized using a combination of a mesofluidic reactor and small-angle X-ray scattering (SAXS) size analysis. The use of the mesofluidic reactor was needed to ensure fast mixing given the rapid kinetics for core formation. Using the reactor, it is possible to obtain reproducible sizes across multiple syntheses (<1-2% core size variation) and subnanometer control of the mean core dimensions. The synthetic method demonstrated here provides an attractive alternative to two-step syntheses involving ligand exchange because it is more efficient and eliminates the possibility of nanoparticle core size changes during exchange steps. This approach enables the development of "size ladders" of particles with the same surface chemistry for investigations of structure-function relationships.

3.
Chemphyschem ; 14(12): 2655-61, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23616422

RESUMEN

The challenge of defining a length on the nanoscale is non-trivial. For a well-defined inorganic nanoscale species, a size measurement can describe a number of different dimensions (core, shell, solvation sphere). Often size is reported out of context or even inadvertently misrepresented. Since many of the techniques used to measure size depend on significant and sometimes destructive sample preparation, an additional challenge is defining "what size means" for a nanoscale species in solution. In this Concept, the distinction is made between complementary techniques that can be used together to unveil more information about the material in question, and corroborative techniques, which are used to make multiple measurements of the same property. Additionally, corroborative techniques can be used to measure the same property in and out-of solution so as to reveal details about solution behaviour. We highlight various approaches to this characterization challenge in the context of three case studies that demonstrate the use of both complementary and corroborative techniques to elucidate the various functional dimensions of different types of inorganic nanoscale species in solution.

4.
ACS Nano ; 9(3): 3050-9, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25727562

RESUMEN

Size-dependent properties of surface-confined inorganic nanostructures are of interest for applications ranging from sensing to catalysis and energy production. Ligand-stabilized nanoparticles are attractive precursors for producing such nanostructures because the stabilizing ligands may be used to direct assembly of thoroughly characterized nanoparticles on the surface. Upon assembly; however, the ligands block the active surface of the nanoparticle. Methods used to remove these ligands typically result in release of nanoparticles from the surface or cause undesired growth of the nanoparticle core. Here, we demonstrate that mild chemical oxidation (50 ppm of ozone in nitrogen) oxidizes the thiolate headgroups, lowering the ligand's affinity for the gold nanoparticle surface and permitting the removal of the ligands at room temperature by rinsing with water. XPS and TEM measurements, performed using a custom planar analysis platform that permits detailed imaging and chemical analysis, provide insight into the mechanism of ligand removal and show that the particles retain their core size and remain tethered on the surface core during treatment. By varying the ozone exposure time, it is possible to control the amount of ligand removed. Catalytic carbon monoxide oxidation was used as a functional assay to demonstrate ligand removal from the gold surface for nanoparticles assembled on a high surface area support (fumed silica).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA