Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Phys Chem Chem Phys ; 20(35): 22783-22795, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30141800

RESUMEN

Plasma-enhanced atomic layer deposition (ALD) of metal oxides is rapidly gaining interest, especially in the electronics industry, because of its numerous advantages over the thermal process. However, the underlying reaction mechanism is not sufficiently understood, particularly regarding saturation of the reaction and densification of the film. In this work, we employ first principles density functional theory (DFT) to determine the predominant reaction pathways, surface intermediates and by-products formed when constituents of O2-plasma or O3 adsorb onto a methylated surface typical of TMA-based alumina ALD. The main outcomes are that a wide variety of barrierless and highly exothermic reactions can take place. This leads to the spontaneous production of various by-products with low desorption energies and also of surface intermediates from the incomplete combustion of -CH3 ligands. Surface hydroxyl groups are the most frequently observed intermediates and are formed as a consequence of the conservation of atoms and charge when methyl ligands are initially oxidized (rather than from subsequent re-adsorption of molecular water). Anionic intermediates such as formates are also commonly observed at the surface in the simulations. Formaldehyde, CH2O, is the most frequently observed gaseous by-product. Desorption of this by-product leads to saturation of the redox reaction at the level of two singlet oxygen atoms per CH3 group, where the oxidation state of C is zero, rather than further reaction with oxygen to higher oxidation states. We conclude that the self-limiting chemistry that defines ALD comes about in this case through the desorption by-products with partially-oxidised carbon. The simulations also show that densification occurs when ligands are removed or oxidised to intermediates, indicating that there may be an inverse relationship between Al/O coordination numbers in the final film and the concentration of chemically-bound ligands or intermediate fragments covering the surface during each ALD pulse. Therefore reactions that generate a bare surface Al will produce denser films in metal oxide ALD.

2.
Inorg Chem ; 54(1): 7-9, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25488657

RESUMEN

Treatment of Zn(Si(SiMe3)3)2 with ZnX2 (X = Cl, Br, I) in tetrahydrofuran (THF) at 23 °C afforded [Zn(Si(SiMe3)3)X(THF)]2 in 83-99% yield. X-ray crystal structures revealed dimeric structures with Zn2X2 cores. Thermogravimetric analyses of [Zn(Si(SiMe3)3)X(THF)]2 demonstrated a loss of coordinated THF between 50 and 155 °C and then single-step weight losses between 200 and 275 °C. The nonvolatile residue was zinc metal in all cases. Bulk thermolyses of [Zn(Si(SiMe3)3)X(THF)]2 between 210 and 250 °C afforded zinc metal in 97-99% yield, Si(SiMe3)3X in 91-94% yield, and THF in 81-98% yield. Density functional theory calculations confirmed that zinc formation becomes energetically favorable upon THF loss. Similar reactions are likely to be general for M(SiR3)n/MXn pairs and may lead to new metal-film-growth processes for chemical vapor deposition and atomic layer deposition.

3.
J Comput Chem ; 35(3): 244-59, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24249148

RESUMEN

To describe the atomic layer deposition (ALD) reactions of HfO2 from Hf(N(CH3)2)4 and H2O, a three-dimensional on-lattice kinetic Monte-Carlo model is developed. In this model, all atomistic reaction pathways in density functional theory (DFT) are implemented as reaction events on the lattice. This contains all steps, from the early stage of adsorption of each ALD precursor, kinetics of the surface protons, interaction between the remaining precursors (steric effect), influence of remaining fragments on adsorption sites (blocking), densification of each ALD precursor, migration of each ALD precursors, and cooperation between the remaining precursors to adsorb H2O (cooperative effect). The essential chemistry of the ALD reactions depends on the local environment at the surface. The coordination number and a neighbor list are used to implement the dependencies. The validity and necessity of the proposed reaction pathways are statistically established at the mesoscale. The formation of one monolayer of precursor fragments is shown at the end of the metal pulse. Adsorption and dissociation of the H2O precursor onto that layer is described, leading to the delivery of oxygen and protons to the surface during the H2O pulse. Through these processes, the remaining precursor fragments desorb from the surface, leaving the surface with bulk-like and OH-terminated HfO2, ready for the next cycle. The migration of the low coordinated remaining precursor fragments is also proposed. This process introduces a slow reordering motion (crawling) at the mesoscale, leading to the smooth and conformal thin film that is characteristic of ALD.

4.
Phys Chem Chem Phys ; 16(7): 3036-46, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24394338

RESUMEN

We studied the reduction of CuO(111) surface using density functional theory (DFT) with the generalized gradient approximation corrected for on-site Coulomb interactions (GGA + U) and screened hybrid DFT (HSE06 functional). The surface reduction process by oxygen vacancy formation and H2 adsorption on the CuO(111) surface is investigated as two different reduction mechanisms. It is found that both GGA + U and HSE06 predict the same trend in the relative stability of oxygen vacancies. We found that loss of the subsurface oxygen is initially thermodynamically favourable. As the oxygen vacancy concentration increases, mixture of subsurface and surface vacancies is energetically preferred over full reduction of the surface or subsurface monolayer. The reduction of Cu(2+) to Cu(+) is found to be more favourable than that of Cu(+) to Cu(0) in the most stable vacancy structures at all concentrations. Consistent with the oxygen vacancy calculations, H2 adsorption occurs initially on under-coordinated surface oxygen. Water molecules are formed upon the adsorption of H2 and this gives a mechanism for H2 reduction of CuO to Cu. Ab initio atomistic thermodynamics shows that reducing CuO to metallic Cu at the surface is more energetically difficult than in the bulk so that the surface oxide protects the bulk from reduction. Using H2 as the reducing agent, it is found that the CuO surface is reduced to Cu2O at approximately 360 K and that complete reduction from Cu2O to metallic Cu occurs at 780 K.

5.
Phys Chem Chem Phys ; 14(22): 7954-64, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22549386

RESUMEN

It is a common finding that titanocene-derived precursors do not yield TiO(2) films in atomic layer deposition (ALD) with water. For instance, ALD with Ti(OMe)(4) and water gives 0.5 Å/cycle, while TiCp*(OMe)(3) does not show any growth (Me = CH(3), Cp* = C(5)(CH(3))(5)). From mass spectrometry we found that Ti(OMe)(4) occurs in the gas phase practically exclusively as a monomer. We then used first principles density functional theory (DFT) to model the ALD reaction sequence and find the reason for the difference in growth behaviour. Both precursors adsorb initially via hydrogen-bonding. The simulations reveal that the Cp* ligand of TiCp*(OMe)(3) lowers the Lewis acidity of the Ti centre and prevents its coordination to surface O ('densification') during both of the ALD pulses. The effect of Cp* on Ti seems to be both steric (full coordination sphere) and electronic (lower electrophilicity). This crucial step in the sequence of ALD reactions is therefore not possible in the case of TiCp*(OMe)(3) + H(2)O, which means that there is no deposition of TiO(2) films.

6.
J Phys Chem A ; 116(35): 8893-901, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-22891810

RESUMEN

We present theoretical studies based on first-principles density functional theory calculations for the possible gas-phase mechanism of the atomic layer deposition (ALD) of copper by transmetalation from common precursors such as Cu(acac)(2), Cu(hfac)(2), Cu(PyrIm(R))(2) with R = (i)Pr and Et, Cu(dmap)(2), and CuCl(2) where diethylzinc acts as the reducing agent. An effect on the geometry and reactivity of the precursors due to differences in electronegativity, steric hindrance, and conjugation present in the ligands was observed. Three reaction types, namely, disproportionation, ligand exchange, and reductive elimination, were considered that together comprise the mechanism for the formation of copper in its metallic state starting from the precursors. A parallel pathway for the formation of zinc in its metallic form was also considered. The model Cu(I) molecule Cu(2)L(2) was studied, as Cu(I) intermediates at the surface play an important role in copper deposition. Through our study, we found that accumulation of an LZnEt intermediate results in zinc contamination by the formation of either Zn(2)L(2) or metallic zinc. Ligand exchange between Cu(II) and Zn(II) should proceed through a Cu(I) intermediate, as otherwise, it would lead to a stable copper molecule rather than copper metal. Volatile ZnL(2) favors the ALD reaction, as it carries the reaction forward.

7.
J Nanosci Nanotechnol ; 11(9): 8089-93, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22097535

RESUMEN

It is a common finding that titanocene-derived precursors do not yield TiO2 films in ALD with water. For instance, ALD with Ti(OMe)4 and water gives 0.5 A/cycle, while TiCp*(OMe)3 does not show any growth (Me=CH3, Cp* = C5(CH3)5). This is apparently in contradiction with the computed reactivity of the ligands: the energetics of hydrolysis of the gas-phase precursor indicate that TiCp*(OMe)3 is more reactive to ligand elimination than Ti(OMe)4. However such a model of precursor reactivity neglects surface reactions such as adsorption, diffusion and desorption, all of which can have an important effect on ALD growth rate. A more accurate model of the surface reaction is needed to find the reason for the different behaviours of Ti(OMe)4 and TiCp*(OMe)3 in the ALD process. The more realistic surface model is a TiO2 slab that is periodic in three dimensions. These calculations reveal that TiCp*(OMe)3 does not chemisorb in the usual way because of extreme crowding of the Ti centre by Cp* and that this prevents ALD growth.

8.
J Nanosci Nanotechnol ; 11(9): 8246-50, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22097563

RESUMEN

The use of III-V materials as the channel in future transistor devices is dependent on removing the deleterious native oxides from their surface before deposition of a gate dielectric. Trimethylaluminium has been found to achieve in situ 'clean-up' of the oxides of GaAs and InGaAs before atomic layer deposition (ALD) of alumina. Here we propose six reaction mechanisms for 'clean-up,' featuring exchange of ligands between surface atoms, reduction of arsenic oxide by methyl groups and desorption of various products. We use first principles Density Functional Theory (DFT) to determine which mechanistic path is thermodynamically favoured based on models of the bulk oxides and gas-phase products. We therefore predict that 'clean-up' of arsenic oxides mostly produces As4 gas. Most C is predicted to form C2H6 but with some C2H4, CH4 and H2O. An alternative pathway is non-redox ligand exchange, which allows non-reducible oxides to be cleaned-up.

9.
Langmuir ; 26(12): 9179-82, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20469852

RESUMEN

We present mechanisms for atomic layer deposition of Ru, Rh, Pd, Os, Ir, or Pt metal from homoleptic precursors and oxygen. The novel mechanistic feature is that combustion of ligands produces transient hydroxyl groups on the surface, which can undergo Brønsted-type elimination of a further ligand or water from the surface. Each ligand therefore releases one electron for reduction of the metal. The growth reaction may be described as oxide-catalyzed redox decomposition of the precursor. To validate the mechanism against experiment, we derive analytical expressions for product ratios and the growth rate in terms of saturating coverages.

10.
J Phys Chem A ; 114(4): 1879-86, 2010 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-20055493

RESUMEN

Thin film dielectrics based on hafnium and zirconium oxides are being introduced to increase the permittivity of insulating layers in nanoelectronic transistor and memory devices. Atomic layer deposition (ALD) is the process of choice for fabricating these films, and the success of this method depends crucially on the chemical properties of the precursor molecules. Designing new precursors requires molecular engineering and chemical tailoring to obtain specific physical properties and performance capabilities. A successful ALD precursor should be volatile, stable in the gas-phase, but reactive on the substrate and growing surface, leading to inert byproduct. This study is concerned with the thermal stability in the gas phase of Ti, Zr, and Hf precursors that contain cyclopentadienyl (Cp = C(5)H(5-x)R(x)) ligands. We use density functional theory (DFT) to probe the non-ALD decomposition pathway and find a mechanism via intramolecular alpha-H transfer that produces an alkylidene complex. The analysis shows that thermal stabilities of complexes of the type MCp(2)(CH(3))(2) increase down group 4 (M = Ti, Zr, and Hf) due to an increase in the HOMO-LUMO band gap of the reactants, which itself increases with the electrophilicity of the metal. Precursor decomposition via this pathway in the gas phase can therefore be avoided by replacing the alpha-H donor or acceptor ligands or by increasing the electrophilicity of the metal. This illustrates how the ALD process window can be widened by rational molecular design based on mechanistic understanding.

11.
ACS Appl Mater Interfaces ; 10(17): 15216-15225, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29634908

RESUMEN

Understanding the mechanism of SiC chemical vapor deposition (CVD) is an important step in investigating the routes toward future atomic layer deposition (ALD) of SiC. The energetics of various silicon and carbon precursors reacting with bare and H-terminated 3C-SiC (011) are analyzed using ab initio density functional theory (DFT). Bare SiC is found to be reactive to silicon and carbon precursors, while H-terminated SiC is found to be not reactive with these precursors at 0 K. Furthermore, the reaction pathways of silane plasma fragments SiH3 and SiH2 are calculated along with the energetics for the methane plasma fragments CH3 and CH2. SiH3 and SiH2 fragments follow different mechanisms toward Si growth, of which the SiH3 mechanism is found to be more thermodynamically favorable. Moreover, both of the fragments were found to show selectivity toward the Si-H bond and not C-H bond of the surface. On the basis of this, a selective Si deposition process is suggested for silicon versus carbon-doped silicon oxide surfaces.

12.
Adv Mater ; 28(27): 5367-80, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26689290

RESUMEN

Recent progress in the simulation of the chemistry of atomic layer deposition (ALD) is presented for technologically important materials such as alumina, silica, and copper metal. Self-limiting chemisorption of precursors onto substrates is studied using density functional theory so as to determine reaction pathways and aid process development. The main challenges for the future of ALD modeling are outlined.

13.
Nanoscale ; 7(14): 6311-8, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25786200

RESUMEN

Atomic layer deposition (ALD) is a technique for producing conformal layers of nanometre-scale thickness, used commercially in non-planar electronics and increasingly in other high-tech industries. ALD depends on self-limiting surface chemistry but the mechanistic reasons for this are not understood in detail. Here we demonstrate, by first-principle calculations of growth of HfO2 from Hf(N(CH3)2)4-H2O and HfCl4-H2O and growth of Al2O3 from Al(CH3)3-H2O, that, for all these precursors, co-adsorption plays an important role in ALD. By this we mean that previously-inert adsorbed fragments can become reactive once sufficient numbers of molecules adsorb in their neighbourhood during either precursor pulse. Through the calculated activation energies, this 'cooperative' mechanism is shown to have a profound influence on proton transfer and ligand desorption, which are crucial steps in the ALD cycle. Depletion of reactive species and increasing coordination cause these reactions to self-limit during one precursor pulse, but to be re-activated via the cooperative effect in the next pulse. This explains the self-limiting nature of ALD.

14.
Dalton Trans ; 44(22): 10188-99, 2015 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25914999

RESUMEN

We propose and evaluate the use of metallocene compounds as reducing agents for the chemical vapour deposition (and specifically atomic layer deposition, ALD) of the transition metal Cu from metalorganic precursors. Ten different transition metal cyclopentadienyl compounds are screened for their utility in the reduction of Cu from five different Cu precursors by evaluating model reaction energies with density functional theory (DFT) and solution phase chemistry.

15.
J Phys Chem Lett ; 6(18): 3610-4, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26722730

RESUMEN

There is an urgent need to deposit uniform, high-quality, conformal SiN(x) thin films at a low-temperature. Conforming to these constraints, we recently developed a plasma enhanced atomic layer deposition (ALD) process with bis(tertiary-butyl-amino)silane (BTBAS) as the silicon precursor. However, deposition of high quality SiNx thin films at reasonable growth rates occurs only when N2 plasma is used as the coreactant; strongly reduced growth rates are observed when other coreactants like NH3 plasma, or N2-H2 plasma are used. Experiments reported in this Letter reveal that NH(x)- or H- containing plasmas suppress film deposition by terminating reactive surface sites with H and NH(x) groups and inhibiting precursor adsorption. To understand the role of these surface groups on precursor adsorption, we carried out first-principles calculations of precursor adsorption on the ß-Si3N4(0001) surface with different surface terminations. They show that adsorption of the precursor is strong on surfaces with undercoordinated surface sites. In contrast, on surfaces with H, NH2 groups, or both, steric hindrance leads to weak precursor adsorption. Experimental and first-principles results together show that using an N2 plasma to generate reactive undercoordinated surface sites allows strong adsorption of the silicon precursor and, hence, is key to successful deposition of silicon nitride by ALD.

16.
ACS Appl Mater Interfaces ; 6(13): 10534-41, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24915469

RESUMEN

Atomic layer deposition (ALD) of highly conformal, silicon-based dielectric thin films has become necessary because of the continuing decrease in feature size in microelectronic devices. The ALD of oxides and nitrides is usually thought to be mechanistically similar, but plasma-enhanced ALD of silicon nitride is found to be problematic, while that of silicon oxide is straightforward. To find why, the ALD of silicon nitride and silicon oxide dielectric films was studied by applying ab initio methods to theoretical models for proposed surface reaction mechanisms. The thermodynamic energies for the elimination of functional groups from different silicon precursors reacting with simple model molecules were calculated using density functional theory (DFT), explaining the lower reactivity of precursors toward the deposition of silicon nitride relative to silicon oxide seen in experiments, but not explaining the trends between precursors. Using more realistic cluster models of amine and hydroxyl covered surfaces, the structures and energies were calculated of reaction pathways for chemisorption of different silicon precursors via functional group elimination, with more success. DFT calculations identified the initial physisorption step as crucial toward deposition and this step was thus used to predict the ALD reactivity of a range of amino-silane precursors, yielding good agreement with experiment. The retention of hydrogen within silicon nitride films but not in silicon oxide observed in FTIR spectra was accounted for by the theoretical calculations and helped verify the application of the model.

17.
ACS Appl Mater Interfaces ; 5(9): 3704-15, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23544705

RESUMEN

The surface reactivity of various metal precursors with different alkoxide, amide, and alkyl ligands during the atomic layer deposition (ALD) of ternary oxides was determined using simplified theoretical models. Quantum chemical estimations of the Brønsted reactivity of a metal complex precursor at a hydroxylated surface are made using a gas-phase hydrolysis model. The geometry optimized structures and energies for a large suite of 17 metal precursors (including cations of Mg, Ca, Sr, Sc, Y, La, Ti, Zr, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, and Ga) with five different anionic ligands (conjugate bases of tert-butanol, tetramethyl heptanedione, dimethyl amine, isopropyl amidine, and methane) and the corresponding hydrolyzed complexes are calculated using density functional theory (DFT) methods. The theoretically computed energies are used to determine the energetics of the model reactions. These DFT models of hydrolysis are used to successfully explain the reactivity and resulting stoichiometry in terms of metal cation ratios seen experimentally for a variety of ALD-grown ternary oxide systems.


Asunto(s)
Metales/química , Modelos Químicos , Óxidos/química , Cationes , Hidrólisis , Modelos Moleculares , Termodinámica , Alcohol terc-Butílico
18.
Nano Lett ; 8(8): 2452-7, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18611059

RESUMEN

We report and explain circular dichroism in semiconductor quantum dots. CdS nanocrystals capped with penicillamine enantiomers were prepared and found to be both highly luminescent and optically active. No new features in circular dichroism were observed as the nanocrystal grew larger. Density functional calculations reveal that penicillamine strongly distorts surface Cd, transmitting an enantiomeric structure to the surface layers and associated electronic states. The quantum dot core is found to remain undistorted and achiral.


Asunto(s)
Compuestos de Cadmio/química , Puntos Cuánticos , Sulfuros/química , Dicroismo Circular , Microscopía Electrónica de Transmisión , Modelos Moleculares , Conformación Molecular
19.
Phys Chem Chem Phys ; 8(45): 5350-8, 2006 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-19810413

RESUMEN

Materials based on Cu2O are potential p-type transparent semiconducting oxides. Developing an understanding of the mechanism leading to p-type behaviour is important. An accepted origin is the formation of Cu vacancies. However, the way in which this mechanism leads to p-type properties needs to be investigated. This paper presents a first principles analysis of the origin of p-type semiconducting behaviour in Cu2O with 1.5 and 3% Cu vacancy concentrations. Plane wave density functional theory (DFT) with the Perdew-Burke Ernzerhof (PBE) exchange-correlation functional is applied. In order to investigate the applicability of DFT, we firstly show that CuO, with 50% Cu vacancies cannot be described with DFT and in order to obtain a consistent description of CuO, the DFT + U approach is applied. The resulting electronic structure is consistent with experiment, with a spin moment of 0.64 mu(B) and an indirect band gap of 1.48 eV for U = 7 eV. However, for a 3% Cu vacancy concentration in Cu2O, the DFT and DFT + U descriptions of Cu vacancies are similar, indicating that DFT is suitable for a small concentration of Cu vacancies; the formation energy of a Cu vacancy is no larger than 1.7 eV. Formation of Cu vacancies produces delocalised hole states with hole effective masses consistent with the semiconducting nature of Cu2O. These results demonstrate that the p-type semiconducting properties observed for Cu2O are explained by a small concentration of Cu vacancies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA