Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Fungal Syst Evol ; 9: 99-159, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36072820

RESUMEN

The consumption of fungi by animals is a significant trophic interaction in most terrestrial ecosystems, yet the role mammals play in these associations has been incompletely studied. In this review, we compile 1 154 references published over the last 146 years and provide the first comprehensive global review of mammal species known to eat fungi (508 species in 15 orders). We review experimental studies that found viable fungal inoculum in the scats of at least 40 mammal species, including spores from at least 58 mycorrhizal fungal species that remained viable after ingestion by mammals. We provide a summary of mammal behaviours relating to the consumption of fungi, the nutritional importance of fungi for mammals, and the role of mammals in fungal spore dispersal. We also provide evidence to suggest that the morphological evolution of sequestrate fungal sporocarps (fruiting bodies) has likely been driven in part by the dispersal advantages provided by mammals. Finally, we demonstrate how these interconnected associations are widespread globally and have far-reaching ecological implications for mammals, fungi and associated plants in most terrestrial ecosystems. Citation: Elliott TF, Truong C, Jackson S, Zúñiga CL, Trappe JM, Vernes K (2022). Mammalian mycophagy: a global review of ecosystem interactions between mammals and fungi. Fungal Systematics and Evolution 9: 99-159. doi: 10.3114/fuse.2022.09.07.

2.
Fungal Syst Evol ; 10: 19-90, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36789279

RESUMEN

Nine new genera, 17 new species, nine new combinations, seven epitypes, three lectotypes, one neotype, and 14 interesting new host and / or geographical records are introduced in this study. New genera: Neobarrmaelia (based on Neobarrmaelia hyphaenes), Neobryochiton (based on Neobryochiton narthecii), Neocamarographium (based on Neocamarographium carpini), Nothocladosporium (based on Nothocladosporium syzygii), Nothopseudocercospora (based on Nothopseudocercospora dictamni), Paracamarographium (based on Paracamarographium koreanum), Pseudohormonema (based on Pseudohormonema sordidus), Quasiphoma (based on Quasiphoma hyphaenes), Rapidomyces (based on Rapidomyces narthecii). New species: Ascocorticium sorbicola (on leaves of Sorbus aucuparia, Belgium), Dactylaria retrophylli (on leaves of Retrophyllum rospigliosii, Colombia), Dactylellina miltoniae (on twigs of Miltonia clowesii, Colombia), Exophiala eucalyptigena (on dead leaves of Eucalyptus viminalis subsp. viminalis supporting Idolothrips spectrum, Australia), Idriellomyces syzygii (on leaves of Syzygium chordatum, South Africa), Microcera lichenicola (on Parmelia sulcata, Netherlands), Neobarrmaelia hyphaenes (on leaves of Hyphaene sp., South Africa), Neobryochiton narthecii (on dead leaves of Narthecium ossifragum, Netherlands), Niesslia pseudoexilis (on dead leaf of Quercus petraea, Serbia), Nothocladosporium syzygii (on leaves of Syzygium chordatum, South Africa), Nothotrimmatostroma corymbiae (on leaves of Corymbia henryi, South Africa), Phaeosphaeria hyphaenes (on leaves of Hyphaene sp., South Africa), Pseudohormonema sordidus (on a from human pacemaker, USA), Quasiphoma hyphaenes (on leaves of Hyphaene sp., South Africa), Rapidomyces narthecii (on dead leaves of Narthecium ossifragum, Netherlands), Reticulascus parahennebertii (on dead culm of Juncus inflexus, Netherlands), Scytalidium philadelphianum (from compressed air in a factory, USA). New combinations: Neobarrmaelia serenoae, Nothopseudocercospora dictamni, Dothiora viticola, Floricola sulcata, Neocamarographium carpini, Paracamarographium koreanum, Rhexocercosporidium bellocense, Russula lilacina. Epitypes: Elsinoe corni (on leaves of Cornus florida, USA), Leptopeltis litigiosa (on dead leaf fronds of Pteridium aquilinum, Netherlands), Nothopseudocercospora dictamni (on living leaves of Dictamnus albus, Russia), Ramularia arvensis (on leaves of Potentilla reptans, Netherlands), Rhexocercosporidium bellocense (on leaves of Verbascum sp., Germany), Rhopographus filicinus (on dead leaf fronds of Pteridium aquilinum, Netherlands), Septoria robiniae (on leaves of Robinia pseudoacacia, Belgium). Lectotypes: Leptopeltis litigiosa (on Pteridium aquilinum, France), Rhopographus filicinus (on dead leaf fronds of Pteridium aquilinum, Netherlands), Septoria robiniae (on leaves of Robinia pseudoacacia, Belgium). Neotype: Camarographium stephensii (on dead leaf fronds of Pteridium aquilinum, Netherlands). Citation: Crous PW, Begoude BAD, Boers J, Braun U, Declercq B, Dijksterhuis J, Elliott TF, Garay-Rodriguez GA, Jurjevic Z, Kruse J, Linde CC, Loyd A, Mound L, Osieck ER, Rivera-Vargas LI, Quimbita AM, Rodas CA, Roux J, Schumacher RK, Starink-Willemse M, Thangavel R, Trappe JM, van Iperen AL, Van Steenwinkel C, Wells A, Wingfield MJ, Yilmaz N, Groenewald JZ (2022) New and Interesting Fungi. 5. Fungal Systematics and Evolution 10: 19-90. doi: 10.3114/fuse.2022.10.02.

3.
Fungal Syst Evol ; 6: 253-263, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32904160

RESUMEN

Based on our study of the morphology and genetics of sporocarps collected in the mountains of northern Thailand, we herein describe Entoloma sequestratum as a new sequestrate member of the Entolomotaceae. This serves as the first report of a sequestrate member of the genus from Thailand. In addition, we provide a worldwide key to all of the described sequestrate members of the genus.

4.
Fungal Syst Evol ; 2: 361, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32467894

RESUMEN

Two corrections are needed to our revision of sequestrate Russula nomenclature (Elliott & Trappe 2018). Decisions are based on the International Code of Nomenclature for algae, fungi, and plants (Turland et al. 2018), hereafter referred to as the "Shenzhen Code". We present them in the same format as the original publication to facilitate comparison of the corrections with the previous publication.

5.
Fungal Syst Evol ; 1: 229-242, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32490368

RESUMEN

Before the application of molecular techniques, evolutionary relationships between sequestrate genera and their epigeous counterparts in the Russulaceae were unclear. Based on overwhelming evidence now available, personal observations, and consideration of the International Code for Nomenclature of Algae, Fungi and Plants, we combine the overlapping sequestrate generic names Bucholtzia, Cystangium, Elasmomyces, Gymnomyces, Macowanites, and Martellia with the agaricoid genus Russula. This nomenclatural action follows precedents set by earlier mycologists and continues an effort to create clarity in our understanding of the evolutionary affiliations among sequestrate fungi - particularly the Russulaceae. We also provide the first comprehensive list of described sequestrate species of Russula.

6.
Fungal Syst Evol ; 1: 1-12, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32518896

RESUMEN

We describe three new species of Elaphomyces from eastern North America. Of the three, Elaphomyces loebiae is the rarest, known only from North Carolina and South Carolina, and appears to associate primarily with ectomycorrhizal hardwoods but possibly also with conifers. Elaphomyces cibulae is widely distributed but disjunct from Florida, Mississippi, and North Carolina. Elaphomyces cibulae seems to primarily associate with Quercus species. Elaphomyces mitchelliae has the widest distribution of the three species, from Florida, Maryland, North Carolina, Virginia, and West Virginia, and appears to associate with either ectomycorrhizal hardwoods and/or conifers. In the course of comparing our new Elaphomyces species to previously described European species we discovered that E. persoonii var. minor is conspecific in all essential details with and thus a synonym of E. cyanosporus.

7.
Dalton Trans ; 44(12): 5451-66, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25692758

RESUMEN

The extension of our simple model for predicting the propeller configuration of a triphenylphosphine ligand co-ordinated to achiral metal centres to include stereogenic metal systems is described. By considering nadir energy planes (NEP's) and a series of rigid-body calculations, a model has been developed to reliably predict the configuration of the triphenylphosphine rotor of stereogenic metal complexes. For complexes of the form [M(η(5)-C5H5)(PPh3)(L(1))(L(2))], where it is assumed that L(1) is larger than L(2), the configuration of the triphenylphosphine rotor may be predicted by viewing a Newman projection along the L(1)-M bond. In the orientation where the PPh3 unit is pointing vertically downwards and the orthogonal L(2) ligand is pointing to the right [i.e., an (RM)-configured complex, assuming that L(2) is ranked higher priority than L(1)], the conformation of L(1) can be expected to place the most sterically demanding substituent in the top-right quadrant. In cases where ligand L(1) still presents a steric incursion towards the PPh3 ligand (any part of L(1) other than H proximal to the PPh3 in the approximate zone -30° to +60° from the M-P bond) an (M)-configured rotor is expected, and when this interaction is not present a (P)-configured propeller is predicted. Without exception, these rules are consistent with all empirical data (>140 known crystal structures).


Asunto(s)
Complejos de Coordinación/química , Compuestos Organofosforados/química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Conformación Molecular
9.
J Virol ; 75(14): 6428-39, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11413310

RESUMEN

Respiratory syncytial virus (RSV) produces intense pulmonary inflammation, in part through its ability to induce chemokine synthesis in infected airway epithelial cells. RANTES (regulated upon activation, normally T-cell expressed and presumably secreted) is a CC chemokine which recruits and activates monocytes, lymphocytes, and eosinophils, all cell types present in the lung inflammatory infiltrate induced by RSV infection. In this study, we analyzed the mechanism of RSV-induced RANTES promoter activation in human type II alveolar epithelial cells (A549 cells). Promoter deletion and mutagenesis experiments indicate that RSV requires the presence of five different cis regulatory elements, located in the promoter fragment spanning from -220 to +55 nucleotides, corresponding to NF-kappaB, C/EBP, Jun/CREB/ATF, and interferon regulatory factor (IRF) binding sites. Although site mutations of the NF-kappaB, C/EBP, and CREB/AP-1 like sites reduce RSV-induced RANTES gene transcription to 50% or less, only mutations affecting IRF binding completely abolish RANTES inducibility. Supershift and microaffinity isolation assays were used to identify the different transcription factor family members whose DNA binding activity was RSV inducible. Expression of dominant negative mutants of these transcription factors further established their central role in virus-induced RANTES promoter activation. Our finding that the presence of multiple cis regulatory elements is required for full activation of the RANTES promoter in RSV-infected alveolar epithelial cells supports the enhanceosome model for RANTES gene transcription, which is absolutely dependent on binding of IRF transcription factors. The identification of regulatory mechanisms of RANTES gene expression is fundamental for rational design of inhibitors of RSV-induced lung inflammation.


Asunto(s)
Quimiocina CCL5/genética , Proteínas Inmediatas-Precoces/inmunología , Alveolos Pulmonares/virología , Virus Sincitiales Respiratorios/inmunología , Proteína beta Potenciadora de Unión a CCAAT/fisiología , Línea Celular , Quimiocina CCL5/biosíntesis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Células Epiteliales/inmunología , Células Epiteliales/virología , Humanos , Factores Reguladores del Interferón , FN-kappa B/genética , FN-kappa B/fisiología , Mutación Puntual , Regiones Promotoras Genéticas , Receptores de Péptidos de Invertebrados/genética , Receptores de Péptidos de Invertebrados/fisiología , Proteínas Supresoras de la Señalización de Citocinas , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Transcripción Genética , Proteínas Virales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA