RESUMEN
Epigenetic modifications to cytosine are known to alter transcriptional states and deregulate gene expression in cancer, embryonic development, and most recently in neurodegeneration. To test the hypothesis that global levels of cytosine modification are altered throughout the progression of Alzheimer's disease, 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) were quantified using gas chromatography/mass spectrometry (GC/MS) and stable labeled internal standards of cytosine, 5-mC, and 5-hmC. Cytosine modifications were quantified in DNA extracted from tissue specimens of four brain regions (cerebellum, inferior parietal lobe, superior and middle temporal gyrus, and hippocampus/parahippocampal gyrus) of cognitively normal control (NC) subjects and subjects with mild cognitive impairment (MCI), preclinical Alzheimer's disease (PCAD), late onset Alzheimer's disease, frontotemporal lobar degeneration (FTLD) and dementia with Lewy bodies (DLB). Repeated measures analyses of the data show significant alterations in 5-mC and 5-hmC in early stages of Alzheimer's disease (PCAD and MCI), as well as FTLD and DLB subjects, across multiple regions of the brain. These data suggest alterations in epigenetic regulation of genes may play an early role in the progression of AD as well as other types of neurodegeneration.
Asunto(s)
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Progresión de la Enfermedad , Epigénesis Genética/fisiología , 5-Metilcitosina/análisis , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/patología , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , MasculinoRESUMEN
Epigenetic modifications to cytosine have been shown to regulate transcription in cancer, embryonic development, and recently neurodegeneration. While cytosine methylation studies are now common in neurodegenerative research, hydroxymethylation studies are rare, particularly genome-wide mapping studies. As an initial study to analyze 5-hydroxymethylcytosine (5-hmC) in the Alzheimer's disease (AD) genome, reduced representation hydroxymethylation profiling (RRHP) was used to analyze more than 2 million sites of possible modification in hippocampal DNA of sporadic AD and normal control subjects. Genes with differentially hydroxymethylated regions were filtered based on previously published microarray data for altered gene expression in hippocampal DNA of AD subjects. Our data show significant pathways for altered levels of 5-hmC in the hippocampus of AD subjects compared to age-matched normal controls involved in signaling, energy metabolism, cell function, gene expression, protein degradation, and cell structure and stabilization. Overall, our data suggest a possible role for the dysregulation of epigenetic modifications to cytosine in late stage AD.