Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(5): 1191-1205.e15, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38366592

RESUMEN

Carbohydrate intolerance, commonly linked to the consumption of lactose, fructose, or sorbitol, affects up to 30% of the population in high-income countries. Although sorbitol intolerance is attributed to malabsorption, the underlying mechanism remains unresolved. Here, we show that a history of antibiotic exposure combined with high fat intake triggered long-lasting sorbitol intolerance in mice by reducing Clostridia abundance, which impaired microbial sorbitol catabolism. The restoration of sorbitol catabolism by inoculation with probiotic Escherichia coli protected mice against sorbitol intolerance but did not restore Clostridia abundance. Inoculation with the butyrate producer Anaerostipes caccae restored a normal Clostridia abundance, which protected mice against sorbitol-induced diarrhea even when the probiotic was cleared. Butyrate restored Clostridia abundance by stimulating epithelial peroxisome proliferator-activated receptor-gamma (PPAR-γ) signaling to restore epithelial hypoxia in the colon. Collectively, these mechanistic insights identify microbial sorbitol catabolism as a potential target for approaches for the diagnosis, treatment, and prevention of sorbitol intolerance.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos , Microbioma Gastrointestinal , Sorbitol , Animales , Ratones , Antibacterianos/farmacología , Butiratos , Clostridium , Escherichia coli , Sorbitol/metabolismo
2.
Nature ; 578(7795): 432-436, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31968354

RESUMEN

Our current knowledge about nucleocytoplasmic large DNA viruses (NCLDVs) is largely derived from viral isolates that are co-cultivated with protists and algae. Here we reconstructed 2,074 NCLDV genomes from sampling sites across the globe by building on the rapidly increasing amount of publicly available metagenome data. This led to an 11-fold increase in phylogenetic diversity and a parallel 10-fold expansion in functional diversity. Analysis of 58,023 major capsid proteins from large and giant viruses using metagenomic data revealed the global distribution patterns and cosmopolitan nature of these viruses. The discovered viral genomes encoded a wide range of proteins with putative roles in photosynthesis and diverse substrate transport processes, indicating that host reprogramming is probably a common strategy in the NCLDVs. Furthermore, inferences of horizontal gene transfer connected viral lineages to diverse eukaryotic hosts. We anticipate that the global diversity of NCLDVs that we describe here will establish giant viruses-which are associated with most major eukaryotic lineages-as important players in ecosystems across Earth's biomes.


Asunto(s)
Biodiversidad , Virus ADN/clasificación , Virus ADN/genética , Células Eucariotas/metabolismo , Células Eucariotas/virología , Interacciones Microbiota-Huesped/genética , Metagenómica , Animales , Proteínas de la Cápside/genética , Transferencia de Gen Horizontal , Genoma Viral/genética , Virus Gigantes/clasificación , Virus Gigantes/genética , Filogenia
3.
Nucleic Acids Res ; 52(D1): D164-D173, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37930866

RESUMEN

Plasmids are mobile genetic elements found in many clades of Archaea and Bacteria. They drive horizontal gene transfer, impacting ecological and evolutionary processes within microbial communities, and hold substantial importance in human health and biotechnology. To support plasmid research and provide scientists with data of an unprecedented diversity of plasmid sequences, we introduce the IMG/PR database, a new resource encompassing 699 973 plasmid sequences derived from genomes, metagenomes and metatranscriptomes. IMG/PR is the first database to provide data of plasmid that were systematically identified from diverse microbiome samples. IMG/PR plasmids are associated with rich metadata that includes geographical and ecosystem information, host taxonomy, similarity to other plasmids, functional annotation, presence of genes involved in conjugation and antibiotic resistance. The database offers diverse methods for exploring its extensive plasmid collection, enabling users to navigate plasmids through metadata-centric queries, plasmid comparisons and BLAST searches. The web interface for IMG/PR is accessible at https://img.jgi.doe.gov/pr. Plasmid metadata and sequences can be downloaded from https://genome.jgi.doe.gov/portal/IMG_PR.


Asunto(s)
Metagenoma , Microbiota , Humanos , Metadatos , Programas Informáticos , Bases de Datos Genéticas , Plásmidos/genética
4.
Nucleic Acids Res ; 51(D1): D723-D732, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36382399

RESUMEN

The Integrated Microbial Genomes & Microbiomes system (IMG/M: https://img.jgi.doe.gov/m/) at the Department of Energy (DOE) Joint Genome Institute (JGI) continues to provide support for users to perform comparative analysis of isolate and single cell genomes, metagenomes, and metatranscriptomes. In addition to datasets produced by the JGI, IMG v.7 also includes datasets imported from public sources such as NCBI Genbank, SRA, and the DOE National Microbiome Data Collaborative (NMDC), or submitted by external users. In the past couple years, we have continued our effort to help the user community by improving the annotation pipeline, upgrading the contents with new reference database versions, and adding new analysis functionalities such as advanced scaffold search, Average Nucleotide Identity (ANI) for high-quality metagenome bins, new cassette search, improved gene neighborhood display, and improvements to metatranscriptome data display and analysis. We also extended the collaboration and integration efforts with other DOE-funded projects such as NMDC and DOE Biology Knowledgebase (KBase).


Asunto(s)
Manejo de Datos , Genómica , Genoma Bacteriano , Programas Informáticos , Genoma Arqueal , Bases de Datos Genéticas , Metagenoma
5.
Nucleic Acids Res ; 51(D1): D733-D743, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399502

RESUMEN

Viruses are widely recognized as critical members of all microbiomes. Metagenomics enables large-scale exploration of the global virosphere, progressively revealing the extensive genomic diversity of viruses on Earth and highlighting the myriad of ways by which viruses impact biological processes. IMG/VR provides access to the largest collection of viral sequences obtained from (meta)genomes, along with functional annotation and rich metadata. A web interface enables users to efficiently browse and search viruses based on genome features and/or sequence similarity. Here, we present the fourth version of IMG/VR, composed of >15 million virus genomes and genome fragments, a ≈6-fold increase in size compared to the previous version. These clustered into 8.7 million viral operational taxonomic units, including 231 408 with at least one high-quality representative. Viral sequences in IMG/VR are now systematically identified from genomes, metagenomes, and metatranscriptomes using a new detection approach (geNomad), and IMG standard annotation are complemented with genome quality estimation using CheckV, taxonomic classification reflecting the latest taxonomic standards, and microbial host taxonomy prediction. IMG/VR v4 is available at https://img.jgi.doe.gov/vr, and the underlying data are available to download at https://genome.jgi.doe.gov/portal/IMG_VR.


Asunto(s)
Bases de Datos Genéticas , Genoma Viral , Metadatos , Metagenómica , Programas Informáticos
6.
Environ Microbiol ; 25(9): 1644-1658, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37032561

RESUMEN

Many Archaea produce membrane-spanning lipids that enable life in extreme environments. These isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) may contain up to eight cyclopentyl and one cyclohexyl ring, where higher degrees of cyclization are associated with more acidic, hotter or energy-limited conditions. Recently, the genes encoding GDGT ring synthases, grsAB, were identified in two Sulfolobaceae; however, the distribution and abundance of grs homologs across environments inhabited by these and related organisms remain a mystery. To address this, we examined the distribution of grs homologs in relation to environmental temperature and pH, from thermal springs across Earth, where sequences derive from metagenomes, metatranscriptomes, single-cell and cultivar genomes. The abundance of grs homologs shows a strong negative correlation to pH, but a weak positive correlation to temperature. Archaeal genomes and metagenome-assembled genomes (MAGs) that carry two or more grs copies are more abundant in low pH springs. We also find grs in 12 archaeal classes, with the most representatives in Thermoproteia, followed by MAGs of the uncultured Korarchaeia, Bathyarchaeia and Hadarchaeia, while several Nitrososphaeria encodes >3 copies. Our findings highlight the key role of grs-catalysed lipid cyclization in archaeal diversification across hot and acidic environments.


Asunto(s)
Manantiales de Aguas Termales , Glicerol , Ciclización , Éteres de Glicerilo/química , Archaea/genética , Archaea/química , Lípidos de la Membrana/química , Concentración de Iones de Hidrógeno
7.
Nucleic Acids Res ; 49(D1): D764-D775, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33137183

RESUMEN

Viruses are integral components of all ecosystems and microbiomes on Earth. Through pervasive infections of their cellular hosts, viruses can reshape microbial community structure and drive global nutrient cycling. Over the past decade, viral sequences identified from genomes and metagenomes have provided an unprecedented view of viral genome diversity in nature. Since 2016, the IMG/VR database has provided access to the largest collection of viral sequences obtained from (meta)genomes. Here, we present the third version of IMG/VR, composed of 18 373 cultivated and 2 314 329 uncultivated viral genomes (UViGs), nearly tripling the total number of sequences compared to the previous version. These clustered into 935 362 viral Operational Taxonomic Units (vOTUs), including 188 930 with two or more members. UViGs in IMG/VR are now reported as single viral contigs, integrated proviruses or genome bins, and are annotated with a new standardized pipeline including genome quality estimation using CheckV, taxonomic classification reflecting the latest ICTV update, and expanded host taxonomy prediction. The new IMG/VR interface enables users to efficiently browse, search, and select UViGs based on genome features and/or sequence similarity. IMG/VR v3 is available at https://img.jgi.doe.gov/vr, and the underlying data are available to download at https://genome.jgi.doe.gov/portal/IMG_VR.


Asunto(s)
Bases de Datos Genéticas , Ecosistema , Evolución Molecular , Genoma Viral , Virus/genética , Secuencia de Bases , Análisis por Conglomerados , Geografía , Anotación de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico , Interfaz Usuario-Computador
8.
Nucleic Acids Res ; 49(D1): D751-D763, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33119741

RESUMEN

The Integrated Microbial Genomes & Microbiomes system (IMG/M: https://img.jgi.doe.gov/m/) contains annotated isolate genome and metagenome datasets sequenced at the DOE's Joint Genome Institute (JGI), submitted by external users, or imported from public sources such as NCBI. IMG v 6.0 includes advanced search functions and a new tool for statistical analysis of mixed sets of genomes and metagenome bins. The new IMG web user interface also has a new Help page with additional documentation and webinar tutorials to help users better understand how to use various IMG functions and tools for their research. New datasets have been processed with the prokaryotic annotation pipeline v.5, which includes extended protein family assignments.


Asunto(s)
Análisis de Datos , Manejo de Datos , Bases de Datos Genéticas , Genoma Arqueal , Genoma Microbiano , Metagenoma , ARN Ribosómico 16S/genética , Motor de Búsqueda
9.
Nature ; 536(7617): 425-30, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27533034

RESUMEN

Viruses are the most abundant biological entities on Earth, but challenges in detecting, isolating, and classifying unknown viruses have prevented exhaustive surveys of the global virome. Here we analysed over 5 Tb of metagenomic sequence data from 3,042 geographically diverse samples to assess the global distribution, phylogenetic diversity, and host specificity of viruses. We discovered over 125,000 partial DNA viral genomes, including the largest phage yet identified, and increased the number of known viral genes by 16-fold. Half of the predicted partial viral genomes were clustered into genetically distinct groups, most of which included genes unrelated to those in known viruses. Using CRISPR spacers and transfer RNA matches to link viral groups to microbial host(s), we doubled the number of microbial phyla known to be infected by viruses, and identified viruses that can infect organisms from different phyla. Analysis of viral distribution across diverse ecosystems revealed strong habitat-type specificity for the vast majority of viruses, but also identified some cosmopolitan groups. Our results highlight an extensive global viral diversity and provide detailed insight into viral habitat distribution and host­virus interactions.


Asunto(s)
Planeta Tierra , Ecosistema , Genoma Viral/genética , Metagenómica , Virus/genética , Animales , Organismos Acuáticos/virología , Bacteriófagos/genética , Biodiversidad , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Viral/análisis , ADN Viral/genética , Conjuntos de Datos como Asunto , Genes Virales , Especificidad del Huésped , Interacciones Huésped-Patógeno , Humanos , Metagenoma/genética , Filogenia , Filogeografía , ARN de Transferencia/genética , Análisis de Secuencia , Virus/clasificación , Virus/aislamiento & purificación
10.
Proc Natl Acad Sci U S A ; 116(29): 14661-14670, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31253704

RESUMEN

In hypersaline environments, Nanohaloarchaeota (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaeota [DPANN] superphylum) are thought to be free-living microorganisms. We report cultivation of 2 strains of Antarctic Nanohaloarchaeota and show that they require the haloarchaeon Halorubrum lacusprofundi for growth. By performing growth using enrichments and fluorescence-activated cell sorting, we demonstrated successful cultivation of Candidatus Nanohaloarchaeum antarcticus, purification of Ca. Nha. antarcticus away from other species, and growth and verification of Ca. Nha. antarcticus with Hrr. lacusprofundi; these findings are analogous to those required for fulfilling Koch's postulates. We use fluorescent in situ hybridization and transmission electron microscopy to assess cell structures and interactions; metagenomics to characterize enrichment taxa, generate metagenome assembled genomes, and interrogate Antarctic communities; and proteomics to assess metabolic pathways and speculate about the roles of certain proteins. Metagenome analysis indicates the presence of a single species, which is endemic to Antarctic hypersaline systems that support the growth of haloarchaea. The presence of unusually large proteins predicted to function in attachment and invasion of hosts plus the absence of key biosynthetic pathways (e.g., lipids) in metagenome assembled genomes of globally distributed Nanohaloarchaeota indicate that all members of the lineage have evolved as symbionts. Our work expands the range of archaeal symbiotic lifestyles and provides a genetically tractable model system for advancing understanding of the factors controlling microbial symbiotic relationships.


Asunto(s)
Halorubrum/fisiología , Metagenoma , Nanoarchaeota/fisiología , Simbiosis/fisiología , Regiones Antárticas , ADN de Archaea/genética , ADN de Archaea/aislamiento & purificación , Citometría de Flujo , Genoma Arqueal/genética , Halorubrum/ultraestructura , Metagenómica , Microscopía Electrónica de Transmisión , Nanoarchaeota/ultraestructura , Filogenia , Salinidad
11.
Microb Ecol ; 81(3): 601-616, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33150499

RESUMEN

Despite being the largest estuary on the west coast of North America, no in-depth survey of microbial communities in San Francisco Bay (SFB) waters currently exists. In this study, we analyze bacterioplankton and archaeoplankton communities at several taxonomic levels and spatial extents (i.e., North versus South Bay) to reveal patterns in alpha and beta diversity. We assess communities using high-throughput sequencing of the 16S rRNA gene in 177 water column samples collected along a 150-km transect over a 2-year monthly time-series. In North Bay, the microbial community is strongly structured by spatial salinity changes while in South Bay seasonal variations dominate community dynamics. Along the steep salinity gradient in North Bay, we find that operational taxonomic units (OTUs; 97% identity) have higher site specificity than at coarser taxonomic levels and turnover ("species" replacement) is high, revealing a distinct brackish community (in oligo-, meso-, and polyhaline samples) from fresh and marine end-members. At coarser taxonomic levels (e.g., phylum, class), taxa are broadly distributed across salinity zones (i.e., present/abundant in a large number of samples) and brackish communities appear to be a mix of fresh and marine communities. We also observe variations in brackish communities between samples with similar salinities, likely related to differences in water residence times between North and South Bay. Throughout SFB, suspended particulate matter is positively correlated with richness and influences changes in beta diversity. Within several abundant groups, including the SAR11 clade (comprising up to 30% of reads in a sample), OTUs appear to be specialized to a specific salinity range. Some other organisms also showed pronounced seasonal abundance, including Synechococcus, Ca. Actinomarina, and Nitrosopumilus-like OTUs. Overall, this study represents the first in-depth spatiotemporal survey of SFB microbial communities and provides insight into how planktonic microorganisms have specialized to different niches along the salinity gradient.


Asunto(s)
Archaea , Plancton , Archaea/genética , Bahías , Plancton/genética , ARN Ribosómico 16S/genética , San Francisco
12.
Nucleic Acids Res ; 47(D1): D666-D677, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30289528

RESUMEN

The Integrated Microbial Genomes & Microbiomes system v.5.0 (IMG/M: https://img.jgi.doe.gov/m/) contains annotated datasets categorized into: archaea, bacteria, eukarya, plasmids, viruses, genome fragments, metagenomes, cell enrichments, single particle sorts, and metatranscriptomes. Source datasets include those generated by the DOE's Joint Genome Institute (JGI), submitted by external scientists, or collected from public sequence data archives such as NCBI. All submissions are typically processed through the IMG annotation pipeline and then loaded into the IMG data warehouse. IMG's web user interface provides a variety of analytical and visualization tools for comparative analysis of isolate genomes and metagenomes in IMG. IMG/M allows open access to all public genomes in the IMG data warehouse, while its expert review (ER) system (IMG/MER: https://img.jgi.doe.gov/mer/) allows registered users to access their private genomes and to store their private datasets in workspace for sharing and for further analysis. IMG/M data content has grown by 60% since the last report published in the 2017 NAR Database Issue. IMG/M v.5.0 has a new and more powerful genome search feature, new statistical tools, and supports metagenome binning.


Asunto(s)
Manejo de Datos/métodos , Bases de Datos Genéticas , Genómica/métodos , Metagenoma , Microbiota , Programas Informáticos , Anotación de Secuencia Molecular/métodos , Alineación de Secuencia/métodos
13.
Nucleic Acids Res ; 47(D1): D678-D686, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30407573

RESUMEN

The Integrated Microbial Genome/Virus (IMG/VR) system v.2.0 (https://img.jgi.doe.gov/vr/) is the largest publicly available data management and analysis platform dedicated to viral genomics. Since the last report published in the 2016, NAR Database Issue, the data has tripled in size and currently contains genomes of 8389 cultivated reference viruses, 12 498 previously published curated prophages derived from cultivated microbial isolates, and 735 112 viral genomic fragments computationally predicted from assembled shotgun metagenomes. Nearly 60% of the viral genomes and genome fragments are clustered into 110 384 viral Operational Taxonomic Units (vOTUs) with two or more members. To improve data quality and predictions of host specificity, IMG/VR v.2.0 now separates prokaryotic and eukaryotic viruses, utilizes known prophage sequences to improve taxonomic assignments, and provides viral genome quality scores based on the estimated genome completeness. New features also include enhanced BLAST search capabilities for external queries. Finally, geographic map visualization to locate user-selected viral genomes or genome fragments has been implemented and download options have been extended. All of these features make IMG/VR v.2.0 a key resource for the study of viruses.


Asunto(s)
Manejo de Datos/métodos , Genoma Viral , Genómica/métodos , Programas Informáticos
14.
Environ Microbiol ; 22(8): 3143-3157, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32372527

RESUMEN

Members of the bacterial candidate phylum WPS-2 (or Eremiobacterota) are abundant in several dry, bare soil environments. In a bare soil deposited by an extinct iron-sulfur spring, we found that WPS-2 comprised up to 24% of the bacterial community and up to 108 cells per g of soil based on 16S rRNA gene sequencing and quantification. A single genus-level cluster (Ca. Rubrimentiphilum) predominated in bare soils but was less abundant in adjacent forest. Nearly complete genomes of Ca. Rubrimentiphilum were recovered as single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs). Surprisingly, given the abundance of WPS-2 in bare soils, the genomes did not indicate any capacity for autotrophy, phototrophy, or trace gas metabolism. Instead, they suggest a predominantly aerobic organoheterotrophic lifestyle, perhaps based on scavenging amino acids, nucleotides, and complex oligopeptides, along with lithotrophic capacity on thiosulfate. Network analyses of the entire community showed that some species of Chloroflexi, Actinobacteria, and candidate phylum AD3 (or Dormibacterota) co-occurred with Ca. Rubrimentiphilum and may represent ecological or metabolic partners. We propose that Ca. Rubrimentiphilum act as efficient heterotrophic scavengers. Combined with previous studies, these data suggest that the phylum WPS-2 includes bacteria with diverse metabolic capabilities.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiología del Suelo , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Chloroflexi/clasificación , Chloroflexi/genética , Chloroflexi/aislamiento & purificación , Genómica , Metagenoma , Filogenia , ARN Ribosómico 16S , Suelo
15.
Annu Rev Med ; 64: 145-63, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23327521

RESUMEN

The human microbiota is a complex assemblage of the microbes inhabiting many sites in the human body. Recent advances in technology have enabled deep sequencing and analysis of the members and structures of these communities. Two sites, the vagina and gastrointestinal tract, are highlighted to exemplify how technological advances have enhanced our knowledge of the host-microbiota system. These examples represent low- and high-complexity communities, respectively. In each example, certain community structures are identified that can be extrapolated to larger collections representing multiple individuals and potential disease or health states. One common feature is the unexpected diversity of the microbiota at any of these locations, which poses a challenge for relating the microbiota to health and disease. However, we anticipate microbiota compositional measurements could become standard clinical practice in the future and may become diagnostic for certain diseases or increased susceptibility to certain disorders. The microbiota of a number of disease states are currently being examined to identify potential correlations. In line with these predictions, it is possible that existing conditions may be resolved by altering the microbiota in a positive way.


Asunto(s)
Tracto Gastrointestinal/microbiología , Metagenoma/fisiología , Simbiosis/fisiología , Ambiente , Humanos
16.
Microbiol Resour Announc ; 13(6): e0032224, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38771040

RESUMEN

When very dry soil is rewet, rapid stimulation of microbial activity has important implications for ecosystem biogeochemistry, yet associated changes in microbial transcription are poorly known. Here, we present metatranscriptomes of California annual grassland soil microbial communities, collected over 1 week from soils rewet after a summer drought-providing a time series of short-term transcriptional response during rewetting.

17.
Sci Data ; 11(1): 339, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580669

RESUMEN

Bridging molecular information to ecosystem-level processes would provide the capacity to understand system vulnerability and, potentially, a means for assessing ecosystem health. Here, we present an integrated dataset containing environmental and metagenomic information from plant-associated microbial communities, plant transcriptomics, plant and soil metabolomics, and soil chemistry and activity characterization measurements derived from the model tree species Populus trichocarpa. Soil, rhizosphere, root endosphere, and leaf samples were collected from 27 different P. trichocarpa genotypes grown in two different environments leading to an integrated dataset of 318 metagenomes, 98 plant transcriptomes, and 314 metabolomic profiles that are supported by diverse soil measurements. This expansive dataset will provide insights into causal linkages that relate genomic features and molecular level events to system-level properties and their environmental influences.


Asunto(s)
Metagenoma , Microbiota , Populus , Transcriptoma , Hongos/genética , Perfilación de la Expresión Génica , Genotipo , Populus/genética , Suelo
18.
Microbiol Resour Announc ; 13(3): e0098023, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38329355

RESUMEN

We present six whole community shotgun metagenomic sequencing data sets of two types of biological soil crusts sampled at the ecotone of the Mojave Desert and Colorado Desert in California. These data will help us understand the diversity and function of biocrust microbial communities, which are essential for desert ecosystems.

19.
Methods Mol Biol ; 2802: 587-609, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38819573

RESUMEN

Comparative analysis of (meta)genomes necessitates aggregation, integration, and synthesis of well-annotated data using standards. The Genomic Standards Consortium (GSC) collaborates with the research community to develop and maintain the Minimum Information about any (x) Sequence (MIxS) reporting standard for genomic data. To facilitate the use of the GSC's MIxS reporting standard, we provide a description of the structure and terminology, how to navigate ontologies for required terms in MIxS, and demonstrate practical usage through a soil metagenome example.


Asunto(s)
Genómica , Metagenoma , Metagenómica , Metagenómica/métodos , Metagenómica/normas , Genómica/métodos , Genómica/normas , Metagenoma/genética , Bases de Datos Genéticas , Microbiología del Suelo
20.
Microbiol Resour Announc ; 13(2): e0108023, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38189307

RESUMEN

We present eight metatranscriptomic datasets of light algal and cyanolichen biological soil crusts from the Mojave Desert in response to wetting. These data will help us understand gene expression patterns in desert biocrust microbial communities after they have been reactivated by the addition of water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA