Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Photonics ; 11(7): 2587-2594, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39036064

RESUMEN

Optical absorption plays a central role in optoelectronic and photonic technologies. Strongly absorbing materials are thus needed for efficient and miniaturized devices. A uniform film much thinner than the wavelength can only absorb up to 50% of the incident light when embedded in a symmetric and homogeneous environment. Although deviating from these conditions allows higher absorption, finding the thinnest possible material with the highest intrinsic absorption is still desirable. Here, we demonstrate strong absorption by artificially stacking WS2 monolayers into superlattices. We compare three simple approaches based on different spacer materials to surpass the peak absorptance of a single WS2 monolayer, which stands at 16% on ideal substrates. Through direct monolayer stacking without an intentional spacer, we reach an absorptance of 27% for an artificial bilayer, although with limited control over interlayer distance. Using a molecular spacer via spin coating, we demonstrate controllable spacer thickness in a bilayer with 25% absorptance while increasing photoluminescence thanks to doping. Finally, we exploit the atomic layer deposition of alumina spacers to boost the absorptance to 31% for a 4-monolayer superlattice. Our results demonstrate that monolayer superlattices are a powerful platform directly applicable to improve strong light-matter coupling and enhance the performance of nanophotonic devices such as modulators and photodetectors.

2.
ACS Appl Nano Mater ; 5(10): 15557-15562, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36338326

RESUMEN

Time-resolved terahertz (THz) spectroscopy is a powerful technique for the determination of charge transport properties in photoexcited semiconductors. However, the relatively long wavelengths of THz radiation and the diffraction limit imposed by optical imaging systems reduce the applicability of THz spectroscopy to large samples with dimensions in the millimeter to centimeter range. Exploiting THz near-field spectroscopy, we present the first time-resolved THz measurements on a single exfoliated 2D nanolayered crystal of a transition metal dichalcogenide (WS2). The high spatial resolution of THz near-field spectroscopy enables mapping of the sheet conductance for an increasing number of atomic layers. The single-crystalline structure of the nanolayered crystal allows for the direct observation of low-energy phonon modes, which are present in all thicknesses, coupling with free carriers. Density functional theory calculations show that the phonon mode corresponds to the breathing mode between atomic layers in the weakly bonded van der Waals layers, which can be strongly influenced by substrate-induced strain. The non-invasive and high-resolution mapping technique of carrier dynamics in nanolayered crystals by time-resolved THz time domain spectroscopy enables possibilities for the investigation of the relation between phonons and charge transport in nanoscale semiconductors for applications in two-dimensional nanodevices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA