Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(19): e2319022121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683986

RESUMEN

Growth is a function of the net accrual of resources by an organism. Energy and elemental contents of organisms are dynamically linked through their uptake and allocation to biomass production, yet we lack a full understanding of how these dynamics regulate growth rate. Here, we develop a multivariate imbalance framework, the growth efficiency hypothesis, linking organismal resource contents to growth and metabolic use efficiencies, and demonstrate its effectiveness in predicting consumer growth rates under elemental and food quantity limitation. The relative proportions of carbon (%C), nitrogen (%N), phosphorus (%P), and adenosine triphosphate (%ATP) in consumers differed markedly across resource limitation treatments. Differences in their resource composition were linked to systematic changes in stoichiometric use efficiencies, which served to maintain relatively consistent relationships between elemental and ATP content in consumer tissues and optimize biomass production. Overall, these adjustments were quantitatively linked to growth, enabling highly accurate predictions of consumer growth rates.


Asunto(s)
Biomasa , Carbono , Nitrógeno , Fósforo , Fósforo/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Adenosina Trifosfato/metabolismo , Modelos Biológicos , Animales
2.
Proc Natl Acad Sci U S A ; 119(30): e2202268119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858403

RESUMEN

Considerable attention is given to absolute nutrient levels in lakes, rivers, and oceans, but less is paid to their relative concentrations, their nitrogen:phosphorus (N:P) stoichiometry, and the consequences of imbalanced stoichiometry. Here, we report 38 y of nutrient dynamics in Flathead Lake, a large oligotrophic lake in Montana, and its inflows. While nutrient levels were low, the lake had sustained high total N: total P ratios (TN:TP: 60 to 90:1 molar) throughout the observation period. N and P loading to the lake as well as loading N:P ratios varied considerably among years but showed no systematic long-term trend. Surprisingly, TN:TP ratios in river inflows were consistently lower than in the lake, suggesting that forms of P in riverine loading are removed preferentially to N. In-lake processes, such as differential sedimentation of P relative to N or accumulation of fixed N in excess of denitrification, likely also operate to maintain the lake's high TN:TP ratios. Regardless of causes, the lake's stoichiometric imbalance is manifested in P limitation of phytoplankton growth during early and midsummer, resulting in high C:P and N:P ratios in suspended particulate matter that propagate P limitation to zooplankton. Finally, the lake's imbalanced N:P stoichiometry appears to raise the potential for aerobic methane production via metabolism of phosphonate compounds by P-limited microbes. These data highlight the importance of not only absolute N and P levels in aquatic ecosystems, but also their stoichiometric balance, and they call attention to potential management implications of high N:P ratios.


Asunto(s)
Ecosistema , Lagos , Nitrógeno , Fósforo , Fitoplancton , Zooplancton , Animales , China , Monitoreo del Ambiente , Eutrofización , Lagos/química , Lagos/microbiología , Metano/biosíntesis , Nitrógeno/análisis , Nitrógeno/metabolismo , Organofosfonatos/metabolismo , Fósforo/análisis , Fósforo/metabolismo , Fitoplancton/crecimiento & desarrollo , Fitoplancton/metabolismo , Zooplancton/crecimiento & desarrollo , Zooplancton/metabolismo
3.
J Phycol ; 60(2): 418-431, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38196398

RESUMEN

With the ongoing differential disruption of the biogeochemical cycles of major elements that are essential for all life (carbon, nitrogen, and phosphorus), organisms are increasingly faced with a heterogenous supply of these elements in nature. Given that photosynthetic primary producers form the base of aquatic food webs, impacts of changed elemental supply on these organisms are particularly important. One way that phytoplankton cope with the differential availability of nutrients is through physiological changes, resulting in plasticity in macromolecular and elemental biomass composition. Here, we assessed how the green alga Chlamydomonas reinhardtii adjusts its macromolecular (e.g., carbohydrates, lipids, and proteins) and elemental (C, N, and P) biomass pools in response to changes in growth rate and the modification of resources (nutrients and light). We observed that Chlamydomonas exhibits considerable plasticity in elemental composition (e.g., molar ratios ranging from 124 to 971 for C:P, 4.5 to 25.9 for C:N, and 15.1 to 61.2 for N:P) under all tested conditions, pointing to the adaptive potential of Chlamydomonas in a changing environment. Exposure to low light modified the elemental and macromolecular composition of cells differently than limitation by nutrients. These observed differences, with potential consequences for higher trophic levels, included smaller cells, shifts in C:N and C:P ratios (due to proportionally greater N and P contents), and differential allocation of C among macromolecular pools (proportionally more lipids than carbohydrates) with different energetic value. However, substantial pools of N and P remained unaccounted for, especially at fast growth, indicating accumulation of N and P in forms we did not measure.


Asunto(s)
Chlamydomonas reinhardtii , Chlorophyta , Chlamydomonas reinhardtii/metabolismo , Chlorophyta/metabolismo , Fotosíntesis , Carbohidratos , Lípidos , Nitrógeno/metabolismo , Fósforo/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34725150

RESUMEN

Species invasions can have substantial impacts on native species and ecosystems, with important consequences for biodiversity. How these disturbances drive changes in the trophic structure of native food webs through time is poorly understood. Here, we quantify trophic disruption in freshwater food webs to invasion by an apex fish predator, lake trout, using an extensive stable isotope dataset across a natural gradient of uninvaded and invaded lakes in the northern Rocky Mountains, USA. Lake trout invasion increased fish diet variability (trophic dispersion), displaced native fishes from their reference diets (trophic displacement), and reorganized macroinvertebrate communities, indicating strong food web disruption. Trophic dispersion was greatest 25 to 50 y after colonization and dissipated as food webs stabilized in later stages of invasion (>50 y). For the native apex predator, bull trout, trophic dispersion preceded trophic displacement, leading to their functional loss in late-invasion food webs. Our results demonstrate how invasive species progressively disrupt native food webs via trophic dispersion and displacement, ultimately yielding biological communities strongly divergent from those in uninvaded ecosystems.


Asunto(s)
Dieta , Cadena Alimentaria , Especies Introducidas , Trucha , Animales , Isótopos de Carbono , Invertebrados , Lagos , Montana , Isótopos de Nitrógeno
5.
Proc Natl Acad Sci U S A ; 117(21): 11566-11572, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32385161

RESUMEN

Large-scale and rapid improvement in wastewater treatment is common practice in developing countries, yet this influence on nutrient regimes in receiving waterbodies is rarely examined at broad spatial and temporal scales. Here, we present a study linking decadal nutrient monitoring data in lakes with the corresponding estimates of five major anthropogenic nutrient discharges in their surrounding watersheds over time. Within a continuous monitoring dataset covering the period 2008 to 2017, we find that due to different rates of change in TN and TP concentrations, 24 of 46 lakes, mostly located in China's populated regions, showed increasing TN/TP mass ratios; only 3 lakes showed a decrease. Quantitative relationships between in-lake nutrient concentrations (and their ratios) and anthropogenic nutrient discharges in the surrounding watersheds indicate that increase of lake TN/TP ratios is associated with the rapid improvement in municipal wastewater treatment. Due to the higher removal efficiency of TP compared with TN, TN/TP mass ratios in total municipal wastewater discharge have continued to increase from a median of 10.7 (95% confidence interval, 7.6 to 15.1) in 2008 to 17.7 (95% confidence interval, 13.2 to 27.2) in 2017. Improving municipal wastewater collection and treatment worldwide is an important target within the 17 sustainable development goals set by the United Nations. Given potential ecological impacts on biodiversity and ecosystem function of altered nutrient ratios in wastewater discharge, our results suggest that long-term strategies for domestic wastewater management should not merely focus on total reductions of nutrient discharges but also consider their stoichiometric balance.


Asunto(s)
Lagos/química , Nitrógeno/análisis , Fósforo/análisis , Aguas Residuales/química , Purificación del Agua , China , Ecosistema , Monitoreo del Ambiente , Purificación del Agua/métodos , Purificación del Agua/normas , Calidad del Agua/normas
6.
J Environ Manage ; 340: 117904, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37084647

RESUMEN

Nitrogen (N) and phosphorus (P) are two critical nutrients for agroecosystems. In meeting food demands, human use of both nutrients has crossed planetary boundaries for sustainability. Further, there has been a dramatic shift in their relative inputs and outputs, which may generate strong N:P imbalances. Despite enormous efforts on agronomic N and P budgets, the spatio-temporal characteristics of different crop types in using nutrients are unknown as are patterns in the stoichiometric coupling of these nutrients. Thus, we analyzed the annual crop-specific N and P budgets and their stoichiometric relations for producing ten major crops at the provincial level of China during 2004-2018. Results show that, China has generally witnessed excessive N and P input over the past 15 years, with the N balance remaining stable while the P balance increasing by more than 170%, thus resulting in a decline in the N:P mass ratios from 10.9 in 2004 to 3.8 in 2018. Crop-aggregated nutrient use efficiency (NUE) of N has increased by 10% in these years while most crops have shown a decreasing trend of this indicator for P, which reduced NUE of P from 75% to 61% during this period. At the provincial level, the nutrient fluxes of Beijing and Shanghai have obviously declined, while the nutrient fluxes of provinces such as Xinjiang and Inner Mongolia have increased significantly. Although N management has made progress, P management should be further explored in the future due to eutrophication concerns. More importantly, N and P management strategies for sustainable agriculture in China should take account of not only the absolute nutrient use, but also their stoichiometric balance for different crops in different locations.


Asunto(s)
Agricultura , Productos Agrícolas , Humanos , China , Agricultura/métodos , Eutrofización , Nutrientes , Nitrógeno/análisis , Fósforo/análisis , Fertilizantes
7.
Ecol Lett ; 25(10): 2189-2202, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35981221

RESUMEN

In light of ongoing climate change, it is increasingly important to know how nutritional requirements of ectotherms are affected by changing temperatures. Here, we analyse the wide thermal response of phosphorus (P) requirements via elemental gross growth efficiencies of Carbon (C) and P, and the Threshold Elemental Ratios in different aquatic invertebrate ectotherms: the freshwater model species Daphnia magna, the marine copepod Acartia tonsa, the marine heterotrophic dinoflagellate Oxyrrhis marina, and larvae of two populations of the marine crab Carcinus maenas. We show that they all share a non-linear cubic thermal response of nutrient requirements. Phosphorus requirements decrease from low to intermediate temperatures, increase at higher temperatures and decrease again when temperature is excessive. This common thermal response of nutrient requirements is of great importance if we aim to understand or even predict how ectotherm communities will react to global warming and nutrient-driven eutrophication.


Asunto(s)
Cambio Climático , Fósforo , Animales , Carbono , Invertebrados , Temperatura
8.
Ecol Lett ; 25(10): 2324-2339, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36089849

RESUMEN

The growth rate hypothesis (GRH) posits that variation in organismal stoichiometry (C:P and N:P ratios) is driven by growth-dependent allocation of P to ribosomal RNA. The GRH has found broad but not uniform support in studies across diverse biota and habitats. We synthesise information on how and why the tripartite growth-RNA-P relationship predicted by the GRH may be uncoupled and outline paths for both theoretical and empirical work needed to broaden the working domain of the GRH. We found strong support for growth to RNA (r2  = 0.59) and RNA-P to P (r2  = 0.63) relationships across taxa, but growth to P relationships were relatively weaker (r2  = 0.09). Together, the GRH was supported in ~50% of studies. Mechanisms behind GRH uncoupling were diverse but could generally be attributed to physiological (P accumulation in non-RNA pools, inactive ribosomes, translation elongation rates and protein turnover rates), ecological (limitation by resources other than P), and evolutionary (adaptation to different nutrient supply regimes) causes. These factors should be accounted for in empirical tests of the GRH and formalised mathematically to facilitate a predictive understanding of growth.


Asunto(s)
Nitrógeno , Fósforo , Evolución Biológica , Ecosistema , Nitrógeno/metabolismo , Fósforo/metabolismo , ARN Ribosómico
9.
Glob Chang Biol ; 26(12): 6644-6656, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32969121

RESUMEN

Alpine regions are changing rapidly due to loss of snow and ice in response to ongoing climate change. While studies have documented ecological responses in alpine lakes and streams to these changes, our ability to predict such outcomes is limited. We propose that the application of fundamental rules of life can help develop necessary predictive frameworks. We focus on four key rules of life and their interactions: the temperature dependence of biotic processes from enzymes to evolution; the wavelength dependence of the effects of solar radiation on biological and ecological processes; the ramifications of the non-arbitrary elemental stoichiometry of life; and maximization of limiting resource use efficiency across scales. As the cryosphere melts and thaws, alpine lakes and streams will experience major changes in temperature regimes, absolute and relative inputs of solar radiation in ultraviolet and photosynthetically active radiation, and relative supplies of resources (e.g., carbon, nitrogen, and phosphorus), leading to nonlinear and interactive effects on particular biota, as well as on community and ecosystem properties. We propose that applying these key rules of life to cryosphere-influenced ecosystems will reduce uncertainties about the impacts of global change and help develop an integrated global view of rapidly changing alpine environments. However, doing so will require intensive interdisciplinary collaboration and international cooperation. More broadly, the alpine cryosphere is an example of a system where improving our understanding of mechanistic underpinnings of living systems might transform our ability to predict and mitigate the impacts of ongoing global change across the daunting scope of diversity in Earth's biota and environments.


Asunto(s)
Lagos , Ríos , Cambio Climático , Ecosistema , Nieve
10.
Environ Sci Technol ; 54(6): 3191-3198, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32073831

RESUMEN

Eutrophication mitigation is an ongoing priority for aquatic ecosystems. However, the current eutrophication control strategies (phosphorus (P) and/or nitrogen (N)) are guided mainly by nutrient addition experiments in small waters without encompassing all in-lake biogeochemical processes that are associated largely with lake morphological characteristics. Here, we use a global lake data set (573 lakes) to show that the relative roles of N vs P in affecting eutrophication are underpinned by water depth. Mean depth and maximum depth relative to mixing depth were used to distinguish shallow (mixing depth > maximum depth), deep (mixing depth < mean depth), and transitional (mean depth ≤ mixing depth ≤ maximum depth) lakes in this study. TN/TP ratio (by mass) was used as an indicator of potential lake nutrient limitation, i.e., N only limitation if N/P < 9, N + P colimitation if 9 ≤ N/P < 22.6, and P only limitation if N/P ≥ 22.6. The results show that eutrophication is favored in shallow lakes, frequently (66.2%) with N limitation while P limitation predominated (94.4%) in most lakes but especially in deep ones. The importance of N limitation increases but P limitation decreases with lake trophic status while N and P colimitation occurs primarily (59.4%) in eutrophic lakes. These results demonstrate that phosphorus reduction can mitigate eutrophication in most large lakes but a dual N and P reduction may be needed in eutrophic lakes, especially in shallow ones (or bays). Our analysis helps clarify the long debate over whether N, P, or both control primary production. While these results imply that more resources be invested in nitrogen management, given the high costs of nitrogen pollution reduction, more comprehensive results from carefully designed experiments at different scales are needed to further verify this modification of the existing eutrophication mitigation paradigm.


Asunto(s)
Lagos , Fósforo , China , Ecosistema , Monitoreo del Ambiente , Eutrofización , Nitrógeno
11.
Proc Natl Acad Sci U S A ; 113(10): 2609-14, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26903638

RESUMEN

Phosphorus (P) is an essential nutrient for living systems with emerging sustainability challenges related to supply uncertainty and aquatic eutrophication. However, its long-term temporal dynamics and subsequent effects on freshwater ecosystems are still unclear. Here, we quantify the P pathways across China over the past four centuries with a life cycle process-balanced model and evaluate the concomitant potential for eutrophication with a spatial resolution of 5 arc-minutes in 2012. We find that P cycling in China has been artificially intensified during this period to sustain the increasing population and its demand for animal protein-based diets, with continuous accumulations in inland waters and lands. In the past decade, China's international trade of P involves net exports of P chemicals and net imports of downstream crops, specifically soybeans from the United States, Brazil, and Argentina. The contribution of crop products to per capita food P demand, namely, the P directly consumed by humans, declined from over 98% before the 1950s to 76% in 2012, even though there was little change in per capita food P demand. Anthropogenic P losses to freshwater and their eutrophication potential clustered in wealthy coastal regions with dense populations. We estimate that Chinese P reserve depletion could be postponed for over 20 y by more efficient life cycle P management. Our results highlight the importance of closing the P cycle to achieve the cobenefits of P resource conservation and eutrophication mitigation in the world's most rapidly developing economy.


Asunto(s)
Productos Agrícolas/química , Ecosistema , Agua Dulce/química , Fósforo/análisis , Algoritmos , Animales , China , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Eutrofización , Agua Dulce/microbiología , Geografía , Humanos , Modelos Teóricos , Fósforo/metabolismo
12.
Ecol Lett ; 21(3): 335-344, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29314550

RESUMEN

The biogeochemical and stoichiometric signature of vegetation fire may influence post-fire ecosystem characteristics and the evolution of plant 'fire traits'. Phosphorus (P), a potentially limiting nutrient in many fire-prone environments, might be particularly important in this context; however, the effects of fire on P cycling often vary widely. We conducted a global-scale meta-analysis using data from 174 soil studies and 39 litter studies, and found that fire led to significantly higher concentrations of soil mineral P as well as significantly lower soil and litter carbon:P and nitrogen:P ratios. These results demonstrate that fire has a P-rich signature in the soil-plant system that varies with vegetation type. Further, they suggest that burning can ease P limitation and decouple the biogeochemical cycling of P, carbon and nitrogen. These effects resemble a transient reversion to an earlier stage of ecosystem development, and likely underpin at least some of fire's impacts on ecosystems and organisms.


Asunto(s)
Incendios , Fósforo , Plantas , Suelo , Carbono , Ecosistema , Nitrógeno
13.
Am Nat ; 192(1): E1-E20, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29897797

RESUMEN

Nitrogen (N) and phosphorus (P) limit primary production in many aquatic ecosystems, with major implications for ecological interactions in plankton communities. Yet it remains unclear how evolution may affect the N∶P stoichiometry of phytoplankton-zooplankton interactions. Here, we address this issue by analyzing an eco-evolutionary model of phytoplankton-zooplankton interactions with explicit nitrogen and phosphorus dynamics. In our model, investment of phytoplankton in nitrogen versus phosphorus uptake is an evolving trait, and zooplankton display selectivity for phytoplankton with N∶P ratios matching their nutritional requirements. We use this model to explore implications of the contrasting N∶P requirements of copepods versus cladocerans. The model predicts that selective zooplankton strongly affect the N∶P ratio of phytoplankton, resulting in deviations from their optimum N∶P ratio. Specifically, selective grazing by nitrogen-demanding copepods favors dominance of phytoplankton with low N∶P ratios, whereas phosphorus-demanding cladocerans favor dominance of phytoplankton with high N∶P ratios. Interestingly, selective grazing by nutritionally balanced zooplankton leads to the occurrence of alternative stable states, where phytoplankton may evolve either low, optimum, or high N∶P ratios, depending on the initial conditions. These results offer a new perspective on commonly observed differences in N∶P stoichiometry between plankton of freshwater and those of marine ecosystems and indicate that selective grazing by zooplankton can have a major impact on the stoichiometric composition of phytoplankton.


Asunto(s)
Cadena Alimentaria , Modelos Biológicos , Nitrógeno/metabolismo , Fósforo/metabolismo , Fitoplancton/metabolismo , Zooplancton/metabolismo , Animales , Evolución Biológica , Cladóceros/metabolismo , Copépodos/metabolismo , Nutrientes
14.
Ecology ; 99(7): 1552-1561, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29882955

RESUMEN

Consumer-driven nutrient recycling can have substantial effects on primary production and patterns of nutrient limitation in aquatic ecosystems by altering the rates as well as the relative supplies of the key nutrients nitrogen (N) and phosphorus (P). While variation in nutrient recycling stoichiometry has been well-studied among species, the mechanisms that explain intraspecific variation in recycling N:P are not well-understood. We examined the relative importance of potential drivers of variation in nutrient recycling by the fish Gambusia marshi among aquatic habitats in the Cuatro Ciénegas basin of Coahuila, Mexico. There, G. marshi inhabits warm thermal springs with high predation pressure as well as cooler, surface runoff-fed systems with low predation pressure. We hypothesized that variation in food consumption among these habitats would drive intraspecific differences in excretion rates and N:P ratios. Stoichiometric models predicted that temperature alone should not cause substantial variation in excretion N:P, but that further reducing consumption rates should substantially increase excretion N:P. We performed temperature and diet ration manipulation experiments in the laboratory and found strong support for model predictions. We then tested these predictions in the field by measuring nutrient recycling rates and ratios as well as body stoichiometry of fish from nine sites that vary in temperature and predation pressure. Fish from warm, high-predation sites excreted nutrients at a lower N:P ratio than fish from cool, low-predation sites, consistent with the hypothesis that reduced consumption under reduced predation pressure had stronger consequences for P retention and excretion among populations than did variation in body stoichiometry. These results highlight the utility of stoichiometric models for predicting variation in consumer-driven nutrient recycling within a phenotypically variable species.


Asunto(s)
Ecosistema , Nutrientes , Animales , Peces , México , Nitrógeno , Fósforo
15.
Ecol Lett ; 19(10): 1237-46, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27501082

RESUMEN

Combined effects of cumulative nutrient inputs and biogeochemical processes that occur in freshwater under anthropogenic eutrophication could lead to myriad shifts in nitrogen (N):phosphorus (P) stoichiometry in global freshwater ecosystems, but this is not yet well-assessed. Here we evaluated the characteristics of N and P stoichiometries in bodies of freshwater and their herbaceous macrophytes across human-impact levels, regions and periods. Freshwater and its macrophytes had higher N and P concentrations and lower N : P ratios in heavily than lightly human-impacted environments, further evidenced by spatiotemporal comparisons across eutrophication gradients. N and P concentrations in freshwater ecosystems were positively correlated and N : P was negatively correlated with population density in China. These results indicate a faster accumulation of P than N in human-impacted freshwater ecosystems, which could have large effects on the trophic webs and biogeochemical cycles of estuaries and coastal areas by freshwater loadings, and reinforce the importance of rehabilitating these ecosystems.


Asunto(s)
Ecosistema , Agua Dulce , Actividades Humanas , Nitrógeno/química , Fósforo/química , China , Contaminantes Químicos del Agua , Contaminación del Agua
16.
Am Nat ; 197(4): 509, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33755544
17.
Appl Environ Microbiol ; 82(15): 4652-62, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27235437

RESUMEN

UNLABELLED: Phosphorus (P) plays a fundamental role in the physiology and biochemistry of all living things. Recent evidence indicates that organisms in the oceans can break down and use P forms in different oxidation states (e.g., +5, +3, +1, and -3); however, information is lacking for organisms from soil and sediment. The Cuatro Ciénegas Basin (CCB), Mexico, is an oligotrophic ecosystem with acute P limitation, providing a great opportunity to assess the various strategies that bacteria from soil and sediment use to obtain P. We measured the activities in sediment and soil of different exoenzymes involved in P recycling and evaluated 1,163 bacterial isolates (mainly Bacillus spp.) for their ability to use six different P substrates. DNA turned out to be a preferred substrate, comparable to a more bioavailable P source, potassium phosphate. Phosphodiesterase activity, required for DNA degradation, was observed consistently in the sampled-soil and sediment communities. A capability to use phosphite (PO3 (3-)) and calcium phosphate was observed mainly in sediment isolates. Phosphonates were used at a lower frequency by both soil and sediment isolates, and phosphonatase activity was detected only in soil communities. Our results revealed that soil and sediment bacteria are able to break down and use P forms in different oxidation states and contribute to ecosystem P cycling. Different strategies for P utilization were distributed between and within the different taxonomic lineages analyzed, suggesting a dynamic movement of P utilization traits among bacteria in microbial communities. IMPORTANCE: Phosphorus (P) is an essential element for life found in molecules, such as DNA, cell walls, and in molecules for energy transfer, such as ATP. The Valley of Cuatro Ciénegas, Coahuila (Mexico), is a unique desert characterized by an extreme limitation of P and a great diversity of microbial life. How do bacteria in this valley manage to obtain P? We measured the availability of P and the enzymatic activity associated with P release in soil and sediment. Our results revealed that soil and sediment bacteria can break down and use P forms in different oxidation states and contribute to ecosystem P cycling. Even genetically related bacterial isolates exhibited different preferences for molecules, such as DNA, calcium phosphate, phosphite, and phosphonates, as substrates to obtain P, evidencing a distribution of roles for P utilization and suggesting a dynamic movement of P utilization traits among bacteria in microbial communities.


Asunto(s)
Bacterias/metabolismo , Sedimentos Geológicos/análisis , Fósforo/metabolismo , Suelo/química , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Biodiversidad , Ecosistema , Sedimentos Geológicos/microbiología , Fósforo/análisis , Filogenia , Microbiología del Suelo
18.
Ecology ; 97(9): 2293-2302, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27859077

RESUMEN

Understanding the impacts of biodiversity loss on ecosystem functioning and services has been a central issue in ecology. Experiments in synthetic communities suggest that biodiversity loss may erode a set of ecosystem functions, but studies in natural communities indicate that the effects of biodiversity loss are usually weak and that multiple functions can be sustained by relatively few species. Yet, the mechanisms by which natural ecosystems are able to maintain multiple functions in the face of diversity loss remain poorly understood. With a long-term and large-scale removal experiment in the Inner Mongolian grassland, here we showed that losses of plant functional groups (PFGs) can reduce multiple ecosystem functions, including biomass production, soil NO3 -N use, net ecosystem carbon exchange, gross ecosystem productivity, and ecosystem respiration, but the magnitudes of these effects depended largely on which PFGs were removed. Removing the two dominant PFGs (perennial rhizomatous grasses and perennial bunchgrasses) simultaneously resulted in dramatic declines in all examined functions, but such declines were circumvented when either dominant PFG was present. We identify the major mechanism for this as a compensation effect by which each dominant PFG can mitigate the losses of others. This study provides evidence that compensation ensuing from PFG losses can mitigate their negative consequence, and thus natural communities may be more resilient to biodiversity loss than currently thought if the remaining PFGs have strong compensation capabilities. On the other hand, ecosystems without well-developed compensatory functional diversity may be much more vulnerable to biodiversity loss.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa , Monitoreo del Ambiente , Plantas , Poaceae
19.
J Exp Biol ; 219(Pt 1): 64-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26567345

RESUMEN

Comparisons of the carbon, nitrogen and phosphorus (P) content of plants and insect herbivores suggests that P limitation and herbivore foraging to balance P intake could be common. However, the lack of synthetic diets for testing the effects of lower ranges of dietary P has been a major impediment to experimental assessment of the ecological importance of, and physiological responses to, P limitation for terrestrial herbivores. We manipulated dietary P content (%P) over its observed range in terrestrial foliage using artificial diets containing near-optimal content of other nutrients for the grasshopper Schistocerca americana. Over much of the ecologically relevant range, when consuming single diets over a lifetime, higher P stimulated growth rates and increased survival, with an optimal dietary %P of 0.25-0.50% when measured throughout development. Excessive dietary P (1%) reduced growth and survival. However, with only short-term (3 day) confinement to single diets, dietary P had no effect on food consumption or growth rates. During these short exposures, fifth (but not third) instar hoppers increased the proportion of P excreted relative to P assimilated as dietary P increased. Target experiments demonstrated that, when given a choice, grasshoppers select among foods to attain a P intake target of 0.6%. These data suggest that P limitation could be common for terrestrial insect herbivores and that they can exhibit ingestive and post-ingestive mechanisms to attain sufficient but not excessive P.


Asunto(s)
Saltamontes/fisiología , Herbivoria , Fósforo/metabolismo , Animales , Conducta de Elección , Heces/química , Femenino , Preferencias Alimentarias , Alimentos Formulados , Saltamontes/crecimiento & desarrollo , Masculino
20.
Oecologia ; 178(2): 557-69, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25663329

RESUMEN

Recent work has indicated that stoichiometric food quality in terms of the carbon:phosphorus (C:P) ratio affects consumers whether the imbalance involves a deficit or an excess of nutrients; hence, organisms exist on a "stoichiometric knife edge". While previous studies have focused primarily on autotroph-herbivore trophic transfer, nutritional imbalances may also affect the interactions between species at higher trophic levels. Since the foods of carnivores are normally stoichiometrically similar to the body compositions of those carnivores, they may be more severely affected than herbivores if imbalances become pronounced. We analysed the response of the predatory copepod Parabroteas sarsi to monospecific diet treatments consisting of high and low C:P prey items. These dietary treatments strongly affected the predator's elemental composition and growth, although prey selection, excretion, egestion, and respiration rates were not affected. We suggest that, due to their low threshold elemental ratio and a narrow C:P stoichiometric knife edge, these predators are highly vulnerable to stoichiometric imbalances, whether an excess or a deficit of nutrients is involved. Our results demonstrating this high sensitivity to prey C:P ratio show that the stoichiometric knife edge may apply to not only herbivores but also higher trophic levels. Thus, predators such as P. sarsi, with a much narrower range of food quality, may also be strongly affected by fluctuations in the quality of their prey, with negative consequences for their secondary production.


Asunto(s)
Carbono/metabolismo , Carnivoría , Copépodos/crecimiento & desarrollo , Cadena Alimentaria , Fósforo/metabolismo , Conducta Predatoria , Animales , Biomasa , Copépodos/metabolismo , Dieta , Carbohidratos de la Dieta/metabolismo , Fósforo Dietético/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA