Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Semin Cancer Biol ; 67(Pt 1): 74-82, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31412296

RESUMEN

The transcription factor SOX2 is essential for embryonic development and plays a crucial role in maintaining the stemness of embryonic cells and various adult stem cell populations. On the other hand, dysregulation of SOX2 expression is associated with a multitude of cancer types and it has been shown that SOX2 positively affects cancer cell traits such as the capacity to proliferate, migrate, invade and metastasize. Moreover, there is growing evidence that SOX2 mediates resistance towards established cancer therapies and that it is expressed in cancer stem cells. These findings indicate that studying the role of SOX2 in the context of cancer progression could lead to the development of new therapeutic options. In this review, the current knowledge about the role of SOX2 in development, maintenance of stemness, cancer progression and the resistance towards cancer therapies is summarized.


Asunto(s)
Neoplasias/patología , Células Madre Neoplásicas/patología , Factores de Transcripción SOXB1/metabolismo , Animales , Proliferación Celular , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Factores de Transcripción SOXB1/genética , Transducción de Señal
2.
Adv Healthc Mater ; 11(12): e2102493, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35285171

RESUMEN

In vitro cell-based experiments are particularly important in fundamental biological research. Microscopy-based readouts to identify cellular changes in response to various stimuli are a popular choice, but gene expression analysis is essential to delineate the underlying molecular dynamics in cells. However, cell-based experiments often suffer from interexperimental variation, especially while using different readout methods. Therefore, establishment of platforms that allow for cell screening, along with parallel investigations of morphological features, as well as gene expression levels, is crucial. The droplet microarray (DMA) platform enables cell screening in hundreds of nanoliter droplets. In this study, a "Cells-to-cDNA on Chip" method is developed enabling on-chip mRNA isolation from live cells and conversion to cDNA in individual droplets of 200 nL. This novel method works efficiently to obtain cDNA from different cell numbers, down to single cell per droplet. This is the first established miniaturized on-chip strategy that enables the entire course of cell screening, phenotypic microscopy-based assessments along with mRNA isolation and its conversion to cDNA for gene expression analysis by real-time PCR on an open DMA platform. The principle demonstrated in this study sets a beginning for myriad of possible applications to obtain detailed information about the molecular dynamics in cultured cells.


Asunto(s)
ADN Complementario , Línea Celular , Expresión Génica , Análisis por Micromatrices/métodos , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA