Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Basic Microbiol ; 60(11-12): 971-982, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33103248

RESUMEN

Endo-ß-xylanases are hemicellulases involved in the conversion of xylans in plant biomass. Here, we report a novel acidophilic ß-xylanase (ScXynA) with high transglycosylation abilities that was isolated from the filamentous fungus Scytalidium candidum 3C. ScXynA was identified as a glycoside hydrolase family 10 (GH10) dimeric protein, with a molecular weight of 38 ± 5 kDa per subunit. The enzyme catalyzed the hydrolysis of different xylans under acidic conditions and was stable in the pH range 2.6-4.5. The kinetic parameters of ScXynA were determined in hydrolysis reactions with p-nitrophenyl-ß-d-cellobioside (pNP-ß-Cel) and p-nitrophenyl-ß-d-xylobioside (pNP-ß-Xyl2 ), and kcat /Km was found to be 0.43 ± 0.02 (s·mM)-1 and 57 ± 3 (s·mM)-1 , respectively. In the catalysis of the transglycosylation o-nitrophenyl-ß-d-xylobioside (oNP-ß-Xyl2 ) acted both as a donor and an acceptor, resulting in the efficient production of o-nitrophenyl xylooligosaccharides, with a degree of polymerization of 3-10 and o-nitrophenyl-ß-d-xylotetraose (oNP-ß-Xyl4 ) as the major product (18.5% yield). The modeled ScXynA structure showed a favorable position for ligand entry and o-nitrophenyl group accommodation in the relatively open -3 subsite, while the cleavage site was covered with an extended loop. These structural features provide favorable conditions for transglycosylation with oNP-ß-Xyl2 . The acidophilic properties and high transglycosylation activity make ScXynA a suitable choice for various biotechnological applications, including the synthesis of valuable xylooligosaccharides.


Asunto(s)
Ascomicetos/enzimología , Endo-1,4-beta Xilanasas/metabolismo , Glucuronatos/metabolismo , Oligosacáridos/metabolismo , Catálisis , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/aislamiento & purificación , Glicosilación , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Modelos Moleculares , Peso Molecular , Multimerización de Proteína , Especificidad por Sustrato , Temperatura , Xilanos/metabolismo
2.
Carbohydr Res ; 498: 108191, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33157460

RESUMEN

Chitin and chitosan can undergo nonspecific enzymatic hydrolysis by several different hydrolases. This susceptibility to nonspecific enzymes opens up many opportunities for producing chitooligosaccharides and low molecular weight chitopolysaccharides, since specific chitinases and chitosanases are rare and not commercially available. In this study, chitosan and chitin were hydrolyzed using several commercially available hydrolases. Among them, cellulases with the highest specific activity demonstrated the best activity, as indicated by the rapid decrease in viscosity of a chitosan solution. The hydrolysis of chitosan by nonspecific enzymes generated a sugar release that corresponded to the decrease in the degree of polymerization. This decrease reached a maximum of 3.3-fold upon hydrolysis of 10% of the sample. Cellulases were better than lysozyme or amylases at hydrolyzing chitosan and chitin. Analysis of 13C CP-MAS NMR and FTIR spectra of chitin after cellulase treatment revealed changes in the chitin crystal structure related to rearrangement of inter- and intramolecular H-bonds. The structural changes and decreases in crystallinity allowed dissolution of chitin molecules of high molecular weight and enhanced the solubility of chitin in alkali by 10-12% compared to untreated chitin.


Asunto(s)
Quitina/química , Quitosano/química , Enlace de Hidrógeno , Hidrolasas/metabolismo , Hidrólisis , Viscosidad
3.
Materials (Basel) ; 13(9)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32369952

RESUMEN

The crystal and supramolecular structure of the bacterial cellulose (BC) has been studied at different stages of cellobiohydrolase hydrolysis using various physical and microscopic methods. Enzymatic hydrolysis significantly affected the crystal and supramolecular structure of native BC, in which the 3D polymer network consisted of nanoribbons with a thickness T ≈ 8 nm and a width W ≈ 50 nm, and with a developed specific surface SBET ≈ 260 m2·g-1. Biodegradation for 24 h led to a ten percent decrease in the mean crystal size Dhkl of BC, to two-fold increase in the sizes of nanoribbons, and in the specific surface area SBET up to ≈ 100 m2·g-1. Atomic force and scanning electron microscopy images showed BC microstructure "loosening"after enzymatic treatment, as well as the formation and accumulation of submicron particles in the cells of the 3D polymer network. Experiments in vitro and in vivo did not reveal cytotoxic effect by the enzyme addition to BC dressings and showed a generally positive influence on the treatment of extensive III-degree burns, significantly accelerating wound healing in rats. Thus, in our opinion, the results obtained can serve as a basis for further development of effective biodegradable dressings for wound healing.

4.
Protein Pept Lett ; 15(10): 1142-4, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19075828

RESUMEN

Thermophilic endo-1,3(4)-beta glucanase (laminarinase) from Rhodothermus marinus was crystallized by the hanging-drop vapor diffusion method. The needle-like crystals belong to space group P2(1) and contain two protein molecules in the asymmetric unit with a solvent content of 51.75 %. Diffraction data were collected to a resolution of 1.95A and resulted in a dataset with an overall R(merge) of 10.4% and a completeness of 97.8%. Analysis of the structure factors revealed pseudomerohedral twinning of the crystals with a twin fraction of approximately 42%.


Asunto(s)
Endo-1,3(4)-beta-Glucanasa/química , Rhodothermus/enzimología , Cristalización , Cristalografía por Rayos X , Endo-1,3(4)-beta-Glucanasa/genética , Endo-1,3(4)-beta-Glucanasa/metabolismo , Glicosilación , Mutación
5.
Biotechnol Biofuels ; 11: 5, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29344086

RESUMEN

BACKGROUND: The ascomycete fungus Trichoderma reesei is the predominant source of enzymes for industrial conversion of lignocellulose. Its glycoside hydrolase family 7 cellobiohydrolase (GH7 CBH) TreCel7A constitutes nearly half of the enzyme cocktail by weight and is the major workhorse in the cellulose hydrolysis process. The orthologs from Trichoderma atroviride (TatCel7A) and Trichoderma harzianum (ThaCel7A) show high sequence identity with TreCel7A, ~ 80%, and represent naturally evolved combinations of cellulose-binding tunnel-enclosing loop motifs, which have been suggested to influence intrinsic cellobiohydrolase properties, such as endo-initiation, processivity, and off-rate. RESULTS: The TatCel7A, ThaCel7A, and TreCel7A enzymes were characterized for comparison of function. The catalytic domain of TatCel7A was crystallized, and two structures were determined: without ligand and with thio-cellotriose in the active site. Initial hydrolysis of bacterial cellulose was faster with TatCel7A than either ThaCel7A or TreCel7A. In synergistic saccharification of pretreated corn stover, both TatCel7A and ThaCel7A were more efficient than TreCel7A, although TatCel7A was more sensitive to thermal inactivation. Structural analyses and molecular dynamics (MD) simulations were performed to elucidate important structure/function correlations. Moreover, reverse conservation analysis (RCA) of sequence diversity revealed divergent regions of interest located outside the cellulose-binding tunnel of Trichoderma spp. GH7 CBHs. CONCLUSIONS: We hypothesize that the combination of loop motifs is the main determinant for the observed differences in Cel7A activity on cellulosic substrates. Fine-tuning of the loop flexibility appears to be an important evolutionary target in Trichoderma spp., a conclusion supported by the RCA data. Our results indicate that, for industrial use, it would be beneficial to combine loop motifs from TatCel7A with the thermostability features of TreCel7A. Furthermore, one region implicated in thermal unfolding is suggested as a primary target for protein engineering.

6.
Protein Eng Des Sel ; 30(7): 477-488, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28651356

RESUMEN

Sulfatases are a family of enzymes (sulfuric ester hydrolases, EC 3.1.6.-) that catalyze the hydrolysis of a wide array of sulfate esters. To date, despite the discovery of many sulfatase genes and the accumulation of data on numerous sulfated molecules, the number of characterized enzymes that are key players in sulfur metabolism remains extremely limited. While mammalian sulfatases are well studied due to their involvement in a wide range of normal and pathological biological processes, lower eukaryotic sulfatases, especially fungal sulfatases, have not been thoroughly investigated at the biochemical and structural level. In this paper, we describe the molecular cloning of Fusarium proliferatum sulfatase (F.p.Sulf-6His), its recombinant expression in Pichia pastoris as a soluble and active cytosolic enzyme and its detailed characterization. Gel filtration and native electrophoretic experiments showed that this recombinant enzyme exists as a tetramer in solution. The enzyme is thermo-sensitive, with an optimal temperature of 25°C. The optimal pH value for the hydrolysis of sulfate esters and stability of the enzyme was 6.0. Despite the absence of the post-translational modification of cysteine into Cα-formylglycine, the recombinant F.p.Sulf-6His has remarkably stable catalytic activity against p-nitrophenol sulfate, with kcat = 0.28 s-1 and Km = 2.45 mM, which indicates potential use in the desulfating processes. The currently proposed enzymatic mechanisms of sulfate ester hydrolysis do not explain the appearance of catalytic activity for the unmodified enzyme. According to the available models, the unmodified enzyme is not able to perform multiple catalytic acts; therefore, the enzymatic mechanism of sulfate esters hydrolysis remains to be fully elucidated.


Asunto(s)
Secuencia de Aminoácidos/genética , Fusarium/enzimología , Procesamiento Proteico-Postraduccional/genética , Sulfatasas/genética , Sitios de Unión , Clonación Molecular , Regulación Enzimológica de la Expresión Génica , Pichia/genética , Estructura Cuaternaria de Proteína , Especificidad por Sustrato , Sulfatasas/biosíntesis , Sulfatasas/química
7.
Biochimie ; 132: 54-65, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27984201

RESUMEN

Here, we report the biochemical characterization of a novel α-l-fucosidase with broad substrate specificity (FpFucA) isolated from the mycelial fungus Fusarium proliferatum LE1. Highly purified α-l-fucosidase was obtained from several chromatographic steps after growth in the presence of l-fucose. The purified α-l-fucosidase appeared to be a monomeric protein of 67 ± 1 kDa that was able to hydrolyze the synthetic substrate p-nitrophenyl α-l-fucopyranoside (pNPFuc), with Km = 1.1 ± 0.1 mM and kcat = 39.8 ± 1.8 s-1. l-fucose, 1-deoxyfuconojirimycin and tris(hydroxymethyl)aminomethane inhibited pNPFuc hydrolysis, with inhibition constants of 0.2 ± 0.05 mM, 7.1 ± 0.05 nM, and 12.2 ± 0.1 mM, respectively. We assumed that the enzyme belongs to subfamily A of the GH29 family (CAZy database) based on its ability to hydrolyze practically all fucose-containing oligosaccharides used in the study and the phylogenetic analysis. We found that this enzyme was a unique α-l-fucosidase that preferentially hydrolyzes the α-(1 â†’ 4)-L-fucosidic linkage present in α-L-fucobiosides with different types of linkages. As a retaining glycosidase, FpFucA is capable of catalyzing the transglycosylation reaction with alcohols (methanol, ethanol, and 1-propanol) and pNP-containing monosaccharides as acceptors. These features make the enzyme an important tool that can be used in the various modifications of valuable fucose-containing compounds.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/enzimología , Polisacáridos/metabolismo , alfa-L-Fucosidasa/metabolismo , Alcoholes/metabolismo , Secuencia de Aminoácidos , Disacáridos/metabolismo , Fucosa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Fusarium/genética , Glicósidos/metabolismo , Glicosilación , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Espectrometría de Masas , Oligosacáridos/metabolismo , Estereoisomerismo , Especificidad por Sustrato , Temperatura , alfa-L-Fucosidasa/genética , alfa-L-Fucosidasa/aislamiento & purificación
8.
Biochim Biophys Acta ; 1650(1-2): 22-9, 2003 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-12922166

RESUMEN

1H-NMR analysis was applied to investigate the hydrolytic activity of Aspergillus awamori inulinase. The obtained NMR signals and deduced metabolite pattern revealed that the enzyme cleaves off only fructose from inulin and does not possess transglycosylating activity. Kinetics for the enzyme hydrolysis of inulooligosaccharides with different degree of polymerization (d.p.) were recorded. The enzyme hydrolyzed both beta2,1- as well as beta2,6-fructosyl linkages in fructooligosaccharides. From the k(cat)/K(m) ratios obtained with inulooligosaccharides with d.p. from 2 to 7, we deduce that the catalytic site of the inulinase contains at least five fructosyl-binding sites and can be classified as exo-acting enzyme. Product analysis of inulopentaose and inulohexaose hydrolysis by the Aspergillus inulinase provided no evidence for a possible multiple-attack mode of action, suggesting that the enzyme acts exclusively as an exoinulinase.


Asunto(s)
Aspergillus/enzimología , Aspergillus/metabolismo , Glicósido Hidrolasas/química , Aspergillus/química , Sitios de Unión , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Hidrólisis , Inulina/química , Espectroscopía de Resonancia Magnética , Factores de Tiempo
9.
Carbohydr Res ; 340(4): 539-46, 2005 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-15721323

RESUMEN

D-arabinitol 1-phosphate (Ara-ol1-P), a substrate for D-arabinitol-phosphate dehydrogenase (APDH), was chemically synthesized from D-arabinonic acid in five steps (O-acetylation, chlorination, reduction, phosphorylation, and de-O-acetylation). Ara-ol1-P was used as a substrate for the characterization of APDH from Bacillus halodurans. APDH converts Ara-ol1-P to xylulose 5-phosphate in the oxidative reaction; both NAD(+) and NADP(+) were accepted as co-factors. Kinetic parameters for the oxidative and reductive reactions are consistent with a ternary complex mechanism.


Asunto(s)
Pentosafosfatos/síntesis química , Pentosafosfatos/metabolismo , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Bacillus/enzimología , Bacillus/genética , Bacillus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Enterococcus/enzimología , Enterococcus/genética , Enterococcus/metabolismo , Cinética , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Xilulosa/metabolismo
10.
Biotechnol J ; 10(1): 210-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25367775

RESUMEN

Synergistic action of exo- and endohydrolazes is preferred for effective destruction of biopolymers. The main purpose of the present work was to develop an efficient tool for degradation of xylan. Macroporous lab-made monolithic columns and commercial CIM-Epoxy disk were used to immobilize the recombinant ß-xylosidase from Aspergillus awamori and Grindamyl ß-xylanase. The efficiency of xylan degradation using the low-loaded ß-xylosidase column appeared to be four times higher than for the in-solution process and about six times higher than for the high-loaded bioreactor. Disk bioreactor with the Grindamil ß-xylanase operated in a recirculation mode has shown noticeable advantages over the column design. Additionally, a system comprised of two immobilized enzyme reactors (IMERs) was tested to accelerate the biopolymer hydrolysis, yielding total xylan conversion into xylose within 20 min. Fast online monitoring HPLC procedure was developed where an analytical DEAE CIM disk was added to the two-enzyme system in a conjoint mode. A loss of activity of immobilized enzymes did not exceed 7% after 5 months of the bioreactor usage. We can therefore conclude that the bioreactors developed exhibit high efficiency and remarkable long-term stability.


Asunto(s)
Aspergillus/enzimología , Reactores Biológicos , Enzimas Inmovilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Xilosidasas/metabolismo , Aspergillus/genética , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Pichia/genética , Pichia/metabolismo , Porosidad , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xilanos/química , Xilanos/metabolismo , Xilosidasas/química , Xilosidasas/genética
11.
Carbohydr Res ; 401: 115-21, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25486100

RESUMEN

Broad regioselectivity of α-galactosidase from Thermotoga maritima (TmGal36A) is a limiting factor for application of the enzyme in the directed synthesis of oligogalactosides. However, this property can be used as a convenient tool in studies of thermodynamics of a glycosidic bond. Here, a novel approach to energy difference estimation is suggested. Both transglycosylation and hydrolysis of three types of galactosidic linkages were investigated using total kinetics of formation and hydrolysis of pNP-galactobiosides catalysed by monomeric glycoside hydrolase family 36 α-galactosidase from T. maritima, a retaining exo-acting glycoside hydrolase. We have estimated transition state free energy differences between the 1,2- and 1,3-linkage (ΔΔG(‡)0 values were equal 5.34 ± 0.85 kJ/mol) and between 1,6-linkage and 1,3-linkage (ΔΔG(‡)0=1.46 ± 0.23 kJ/mol) in pNP-galactobiosides over the course of the reaction catalysed by TmGal36A. Using the free energy difference for formation and hydrolysis of glycosidic linkages (ΔΔG(‡)F-ΔΔG(‡)H), we found that the 1,2-linkage was 2.93 ± 0.47 kJ/mol higher in free energy than the 1,3-linkage, and the 1,6-linkage 4.44 ± 0.71 kJ/mol lower.


Asunto(s)
Biocatálisis , Disacáridos/química , Disacáridos/metabolismo , Thermotoga maritima/enzimología , alfa-Galactosidasa/metabolismo , Glicosilación , Hidrólisis , Cinética , Estereoisomerismo , Especificidad por Sustrato
12.
Carbohydr Res ; 412: 43-9, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26005928

RESUMEN

In the present work we suggest an efficient method, using the whole time course of the reaction, whereby parameters kcat, Km and product KI for the hydrolysis of a p-nitrophenyl glycoside by an exo-acting glycoside hydrolase can be estimated in a single experiment. Its applicability was demonstrated for three retaining exo-glycoside hydrolases, ß-xylosidase from Aspergillus awamori, ß-galactosidase from Penicillium sp. and α-galactosidase from Thermotoga maritima (TmGalA). During the analysis of the reaction course catalyzed by the TmGalA enzyme we had observed that a non-enzymatic process, mutarotation of the liberated α-d-galactose, affected the reaction significantly.


Asunto(s)
Aspergillus/química , Glicósidos/química , Cinética , Penicillium/química , Thermotoga maritima/química , alfa-Galactosidasa/química , beta-Galactosidasa/química , Galactosa/química , Hidrólisis , Xilosidasas/química
13.
FEBS J ; 282(23): 4515-37, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26367132

RESUMEN

The ascomycete Geotrichum candidum is a versatile and efficient decay fungus that is involved, for example, in biodeterioration of compact discs; notably, the 3C strain was previously shown to degrade filter paper and cotton more efficiently than several industrial enzyme preparations. Glycoside hydrolase (GH) family 7 cellobiohydrolases (CBHs) are the primary constituents of industrial cellulase cocktails employed in biomass conversion, and feature tunnel-enclosed active sites that enable processive hydrolytic cleavage of cellulose chains. Understanding the structure-function relationships defining the activity and stability of GH7 CBHs is thus of keen interest. Accordingly, we report the comprehensive characterization of the GH7 CBH secreted by G. candidum (GcaCel7A). The bimodular cellulase consists of a family 1 cellulose-binding module (CBM) and linker connected to a GH7 catalytic domain that shares 64% sequence identity with the archetypal industrial GH7 CBH of Hypocrea jecorina (HjeCel7A). GcaCel7A shows activity on Avicel cellulose similar to HjeCel7A, with less product inhibition, but has a lower temperature optimum (50 °C versus 60-65 °C, respectively). Five crystal structures, with and without bound thio-oligosaccharides, show conformational diversity of tunnel-enclosing loops, including a form with partial tunnel collapse at subsite -4 not reported previously in GH7. Also, the first O-glycosylation site in a GH7 crystal structure is reported--on a loop where the glycan probably influences loop contacts across the active site and interactions with the cellulose surface. The GcaCel7A structures indicate higher loop flexibility than HjeCel7A, in accordance with sequence modifications. However, GcaCel7A retains small fluctuations in molecular simulations, suggesting high processivity and low endo-initiation probability, similar to HjeCel7A. DATABASE: Structural data are available in the Protein Data Bank under the accession numbers 5AMP, 4ZZV, 4ZZW, 4ZZT, and 4ZZU. The Geotrichum candidum GH family 7 cellobiohydrolase nucleotide sequence is available in GenBank under accession number KJ958925. ENZYMES: Glycoside hydrolase family 7 reducing end acting cellobiohydrolase.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa , Geotrichum/enzimología , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia , Temperatura
14.
Carbohydr Res ; 338(4): 313-25, 2003 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-12559729

RESUMEN

A beta-D-xylosidase with molecular mass of 250+/-5 kDa consisting of two identical subunits was purified to homogeneity from a cultural filtrate of Aspergillus sp. The enzyme manifested high transglycosylation activity in transxylosylation with p-nitrophenyl beta-D-xylopyranoside (PNP-X) as substrate, resulting in regio- and stereoselective synthesis of p-nitrophenyl (PNP) beta-(1-->4)-D-xylooligosaccharides with dp 2-7. All transfer products were isolated from the reaction mixtures by HPLC and their structures established by electrospray mass spectrometry and 1H and 13C NMR spectroscopy. The glycosides synthesised, beta-Xyl-1-->(4-beta-Xyl-1-->)(n)4-beta-Xyl-OC6H4NO2-p (n=1-5), were tested as chromogenic substrates for family 10 beta-xylanase from Aspergillus orizae (XynA) and family 11 beta-xylanase I from Trichoderma reesei (XynT) by reversed-phase HPLC and UV-spectroscopy techniques. The action pattern of XynA against the foregoing PNP beta-(1-->4)-D-xylooligosaccharides differed from that of XynT in that the latter released PNP mainly from short PNP xylosides (dp 2-3) while the former liberated PNP from the entire set of substrates synthesised.


Asunto(s)
Aspergillus/enzimología , Compuestos Cromogénicos/síntesis química , Xilosidasas/metabolismo , Cromatografía Líquida de Alta Presión , Glicósidos/síntesis química , Glicosilación , Oligosacáridos/síntesis química , Análisis Espectral , Xilano Endo-1,3-beta-Xilosidasa , Xilosa , Xilosidasas/química , Xilosidasas/aislamiento & purificación
15.
Carbohydr Res ; 337(7): 635-42, 2002 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-11909597

RESUMEN

1-O-Acetyl-beta-D-galactopyranose (AcGal), a new substrate for beta-galactosidase, was synthesized in a stereoselective manner by the trichloroacetimidate procedure. Kinetic parameters (K(M) and k(cat)) for the hydrolysis of 1-O-acetyl-beta-D-galactopyranose catalyzed by the beta-D-galactosidase from Penicillium sp. were compared with similar characteristics for a number of natural and synthetic substrates. The value for k(cat) in the hydrolysis of AcGal was three orders of magnitude greater than for other known substrates. The beta-galactosidase hydrolyzes AcGal with retention of anomeric configuration. The transglycosylation activity of the beta-D-galactosidase in the reaction of AcGal and methyl beta-D-galactopyranoside (1) as substrates was investigated by 1H NMR spectroscopy and HPLC techniques. The transglycosylation product using AcGal as a substrate was beta-D-galactopyranosyl-(1-->6)-1-O-acetyl-beta-D-galactopyranose (with a yield of approximately 70%). In the case of 1 as a substrate, the main transglycosylation product was methyl beta-D-galactopyranosyl-(1-->6)-beta-D-galactopyranoside. Methyl beta-D-galactopyranosyl-(1-->3)-beta-D-galactopyranoside was found to be minor product in the latter reaction.


Asunto(s)
Galactósidos/metabolismo , Penicillium/enzimología , beta-Galactosidasa/metabolismo , Galactósidos/síntesis química , Galactósidos/química , Cinética , Lactosa/metabolismo , Metilgalactósidos/metabolismo , Nitrofenilgalactósidos/metabolismo , Especificidad por Sustrato
16.
Carbohydr Res ; 338(14): 1455-67, 2003 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-12829391

RESUMEN

The transglycosylation reactions catalyzed by beta-1,3-D-glucanases (laminaranases) were used to synthesize a number of 4-methylumbelliferyl (MeUmb) (1-->3)-beta-D-gluco-oligosaccharides having the common structure [beta-D-Glcp-(1-->3)](n)-beta-D-Glcp-MeUmb, where n=1-5. The beta-1,3-D-glucanases used were purified from the culture liquid of Oerskovia sp. and from a homogenate of the marine mollusc Spisula sachalinensis. Laminaran and curdlan were used as (1-->3)-beta-D-glucan donor substrates, while MeUmb-beta-D-glucoside (MeUmbGlcp) was employed as a transglycosylation acceptor. Modification of [beta-D-Glcp-(1-->3)](2)-beta-D-Glcp-MeUmb (MeUmbG(3)) gives 4,6-O-benzylidene-D-glucopyranosyl or 4,6-O-ethylidene-D-glucopyranosyl groups at the non-reducing end of artificial oligosaccharides. The structures of all oligosaccharides obtained were solved by 1H and 13C NMR spectroscopy and electrospray tandem mass spectrometry. The synthetic oligosaccharides were shown to be substrates for a beta-1,3-1,4-D-glucanase from Rhodothermus marinus, which releases MeUmb from beta-di- and beta-triglucosides and from acetal-protected beta-triglucosides. When acting upon substrates with d.p.>3, the enzyme exhibits an endolytic activity, primarily cleaving off MeUmbGlcp and MeUmbG(2).


Asunto(s)
Glucano 1,3-beta-Glucosidasa/química , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Glicósido Hidrolasas/metabolismo , Oligosacáridos/metabolismo , Animales , Bacterias/enzimología , Secuencia de Carbohidratos , Glucano 1,3-beta-Glucosidasa/aislamiento & purificación , Glucano 1,3-beta-Glucosidasa/metabolismo , Glucano Endo-1,3-beta-D-Glucosidasa/aislamiento & purificación , Glicósido Hidrolasas/aislamiento & purificación , Glicosilación , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Estructura Molecular , Moluscos/enzimología , Oligosacáridos/química , Especificidad por Sustrato
17.
Genome Announc ; 2(5)2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25278525

RESUMEN

We report here the draft genome sequence of Geotrichum candidum strain 3C, which is a filamentous yeast-like fungus that holds great promise for biotechnology. The genome was sequenced using Ion Torrent and 454 platforms. The estimated genome size was 41.4 Mb, and 14,579 protein-coding genes were predicted ab initio.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA