Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 186(11): 2425-2437.e21, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37196657

RESUMEN

Ribonuclease HII (RNaseHII) is the principal enzyme that removes misincorporated ribonucleoside monophosphates (rNMPs) from genomic DNA. Here, we present structural, biochemical, and genetic evidence demonstrating that ribonucleotide excision repair (RER) is directly coupled to transcription. Affinity pull-downs and mass-spectrometry-assisted mapping of in cellulo inter-protein cross-linking reveal the majority of RNaseHII molecules interacting with RNA polymerase (RNAP) in E. coli. Cryoelectron microscopy structures of RNaseHII bound to RNAP during elongation, with and without the target rNMP substrate, show specific protein-protein interactions that define the transcription-coupled RER (TC-RER) complex in engaged and unengaged states. The weakening of RNAP-RNaseHII interactions compromises RER in vivo. The structure-functional data support a model where RNaseHII scans DNA in one dimension in search for rNMPs while "riding" the RNAP. We further demonstrate that TC-RER accounts for a significant fraction of repair events, thereby establishing RNAP as a surveillance "vehicle" for detecting the most frequently occurring replication errors.


Asunto(s)
Reparación del ADN , ARN Polimerasas Dirigidas por ADN , Escherichia coli , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Ribonucleótidos/metabolismo
2.
Mol Cell ; 84(5): 897-909.e4, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38340716

RESUMEN

RNA polymerase II (RNA Pol II) can backtrack during transcription elongation, exposing the 3' end of nascent RNA. Nascent RNA sequencing can approximate the location of backtracking events that are quickly resolved; however, the extent and genome-wide distribution of more persistent backtracking are unknown. Consequently, we developed a method to directly sequence the extruded, "backtracked" 3' RNA. Our data show that RNA Pol II slides backward more than 20 nt in human cells and can persist in this backtracked state. Persistent backtracking mainly occurs where RNA Pol II pauses near promoters and intron-exon junctions and is enriched in genes involved in translation, replication, and development, where gene expression is decreased if these events are unresolved. Histone genes are highly prone to persistent backtracking, and the resolution of such events is likely required for timely expression during cell division. These results demonstrate that persistent backtracking can potentially affect diverse gene expression programs.


Asunto(s)
ARN Polimerasa II , ARN , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN/genética , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/genética
3.
Cell ; 167(1): 111-121.e13, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662085

RESUMEN

Bacterial small RNAs (sRNAs) have been implicated in various aspects of post-transcriptional gene regulation. Here, we demonstrate that sRNAs also act at the level of transcription termination. We use the rpoS gene, which encodes a general stress sigma factor σ(S), as a model system, and show that sRNAs DsrA, ArcZ, and RprA bind the rpoS 5'UTR to suppress premature Rho-dependent transcription termination, both in vitro and in vivo. sRNA-mediated antitermination markedly stimulates transcription of rpoS during the transition to the stationary phase of growth, thereby facilitating a rapid adjustment of bacteria to global metabolic changes. Next generation RNA sequencing and bioinformatic analysis indicate that Rho functions as a global "attenuator" of transcription, acting at the 5'UTR of hundreds of bacterial genes, and that its suppression by sRNAs is a widespread mode of bacterial gene regulation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , ARN Pequeño no Traducido/metabolismo , Factor sigma/metabolismo , Terminación de la Transcripción Genética , Regiones no Traducidas 5'
4.
Mol Cell ; 81(2): 281-292.e8, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33296676

RESUMEN

Rho is a general transcription termination factor playing essential roles in RNA polymerase (RNAP) recycling, gene regulation, and genomic stability in most bacteria. Traditional models of transcription termination postulate that hexameric Rho loads onto RNA prior to contacting RNAP and then translocates along the transcript in pursuit of the moving RNAP to pull RNA from it. Here, we report the cryoelectron microscopy (cryo-EM) structures of two termination process intermediates. Prior to interacting with RNA, Rho forms a specific "pre-termination complex" (PTC) with RNAP and elongation factors NusA and NusG, which stabilize the PTC. RNA exiting RNAP interacts with NusA before entering the central channel of Rho from the distal C-terminal side of the ring. We map the principal interactions in the PTC and demonstrate their critical role in termination. Our results support a mechanism in which the formation of a persistent PTC is a prerequisite for termination.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Factores de Elongación de Péptidos/química , Factores de Transcripción/química , Terminación de la Transcripción Genética , Factores de Elongación Transcripcional/química , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Microscopía por Crioelectrón , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
5.
Nature ; 604(7904): 152-159, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35355008

RESUMEN

Transcription-coupled DNA repair (TCR) is presumed to be a minor sub-pathway of nucleotide excision repair (NER) in bacteria. Global genomic repair is thought to perform the bulk of repair independently of transcription. TCR is also believed to be mediated exclusively by Mfd-a DNA translocase of a marginal NER phenotype1-3. Here we combined in cellulo cross-linking mass spectrometry with structural, biochemical and genetic approaches to map the interactions within the TCR complex (TCRC) and to determine the actual sequence of events that leads to NER in vivo. We show that RNA polymerase (RNAP) serves as the primary sensor of DNA damage and acts as a platform for the recruitment of NER enzymes. UvrA and UvrD associate with RNAP continuously, forming a surveillance pre-TCRC. In response to DNA damage, pre-TCRC recruits a second UvrD monomer to form a helicase-competent UvrD dimer that promotes backtracking of the TCRC. The weakening of UvrD-RNAP interactions renders cells sensitive to genotoxic stress. TCRC then recruits a second UvrA molecule and UvrB to initiate the repair process. Contrary to the conventional view, we show that TCR accounts for the vast majority of chromosomal repair events; that is, TCR thoroughly dominates over global genomic repair. We also show that TCR is largely independent of Mfd. We propose that Mfd has an indirect role in this process: it participates in removing obstructive RNAPs in front of TCRCs and also in recovering TCRCs from backtracking after repair has been completed.


Asunto(s)
Proteínas Bacterianas , Reparación del ADN , Escherichia coli , Transcripción Genética , Adenosina Trifosfatasas , Bacterias/genética , Proteínas Bacterianas/genética , Daño del ADN , ADN Helicasas , Proteínas de Unión al ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli
6.
Cell ; 146(4): 533-43, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21854980

RESUMEN

Frequent codirectional collisions between the replisome and RNA polymerase (RNAP) are inevitable because the rate of replication is much faster than that of transcription. Here we show that, in E. coli, the outcome of such collisions depends on the productive state of transcription elongation complexes (ECs). Codirectional collisions with backtracked (arrested) ECs lead to DNA double-strand breaks (DSBs), whereas head-on collisions do not. A mechanistic model is proposed to explain backtracking-mediated DSBs. We further show that bacteria employ various strategies to avoid replisome collisions with backtracked RNAP, the most general of which is translation that prevents RNAP backtracking. If translation is abrogated, DSBs are suppressed by elongation factors that either prevent backtracking or reactivate backtracked ECs. Finally, termination factors also contribute to genomic stability by removing arrested ECs. Our results establish RNAP backtracking as the intrinsic hazard to chromosomal integrity and implicate active ribosomes and other anti-backtracking mechanisms in genome maintenance.


Asunto(s)
Replicación del ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Inestabilidad Genómica , Transcripción Genética , Escherichia coli/enzimología , Escherichia coli/metabolismo , Ribosomas/metabolismo
7.
Mol Cell ; 67(1): 30-43.e6, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28648779

RESUMEN

In search for RNA signals that modulate transcription via direct interaction with RNA polymerase (RNAP), we deep sequenced an E. coli genomic library enriched for RNAP-binding RNAs. Many natural RNAP-binding aptamers, termed RAPs, were mapped to the genome. Over 60% of E. coli genes carry RAPs in their mRNA. Combining in vitro and in vivo approaches, we characterized a subset of inhibitory RAPs (iRAPs) that promote Rho-dependent transcription termination. A representative iRAP within the coding region of the essential gene, nadD, greatly reduces its transcriptional output in stationary phase and under oxidative stress, demonstrating that iRAPs control gene expression in response to changing environment. The mechanism of iRAPs involves active uncoupling of transcription and translation, making nascent RNA accessible to Rho. iRAPs encoded in the antisense strand also promote gene expression by reducing transcriptional interference. In essence, our work uncovers a broad class of cis-acting RNA signals that globally control bacterial transcription.


Asunto(s)
Aptámeros de Nucleótidos/genética , Proteínas Bacterianas/genética , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Técnica SELEX de Producción de Aptámeros , Terminación de la Transcripción Genética , Aptámeros de Nucleótidos/metabolismo , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Nicotinamida-Nucleótido Adenililtransferasa/genética , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Sistemas de Lectura Abierta , Ribosomas/metabolismo , Factores de Tiempo
8.
Nature ; 505(7483): 372-7, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24402227

RESUMEN

UvrD helicase is required for nucleotide excision repair, although its role in this process is not well defined. Here we show that Escherichia coli UvrD binds RNA polymerase during transcription elongation and, using its helicase/translocase activity, forces RNA polymerase to slide backward along DNA. By inducing backtracking, UvrD exposes DNA lesions shielded by blocked RNA polymerase, allowing nucleotide excision repair enzymes to gain access to sites of damage. Our results establish UvrD as a bona fide transcription elongation factor that contributes to genomic integrity by resolving conflicts between transcription and DNA repair complexes. Furthermore, we show that the elongation factor NusA cooperates with UvrD in coupling transcription to DNA repair by promoting backtracking and recruiting nucleotide excision repair enzymes to exposed lesions. Because backtracking is a shared feature of all cellular RNA polymerases, we propose that this mechanism enables RNA polymerases to function as global DNA damage scanners in bacteria and eukaryotes.


Asunto(s)
ADN Helicasas/metabolismo , Reparación del ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Movimiento , Secuencia de Bases , ADN/química , ADN/metabolismo , Daño del ADN , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/enzimología , Escherichia coli/genética , Modelos Moleculares , Datos de Secuencia Molecular , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional
9.
Nature ; 463(7278): 245-9, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20075920

RESUMEN

Rho is the essential RNA helicase that sets the borders between transcription units and adjusts transcriptional yield to translational needs in bacteria. Although Rho was the first termination factor to be discovered, the actual mechanism by which it reaches and disrupts the elongation complex (EC) is unknown. Here we show that the termination-committed Rho molecule associates with RNA polymerase (RNAP) throughout the transcription cycle; that is, it does not require the nascent transcript for initial binding. Moreover, the formation of the RNAP-Rho complex is crucial for termination. We show further that Rho-dependent termination is a two-step process that involves rapid EC inactivation (trap) and a relatively slow dissociation. Inactivation is the critical rate-limiting step that establishes the position of the termination site. The trap mechanism depends on the allosterically induced rearrangement of the RNAP catalytic centre by means of the evolutionarily conserved mobile trigger-loop domain, which is also required for EC dissociation. The key structural and functional similarities, which we found between Rho-dependent and intrinsic (Rho-independent) termination pathways, argue that the allosteric mechanism of termination is general and likely to be preserved for all cellular RNAPs throughout evolution.


Asunto(s)
Regulación Alostérica , ARN Polimerasas Dirigidas por ADN/metabolismo , Factor Rho/metabolismo , Transcripción Genética/fisiología , Sitios de Unión , Biocatálisis , Dominio Catalítico , ARN Polimerasas Dirigidas por ADN/genética , Ácidos Dicarboxílicos/farmacología , Escherichia coli/enzimología , Cinética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación/genética , Compuestos Organofosforados/farmacología , Unión Proteica , Moldes Genéticos , Transcripción Genética/efectos de los fármacos
10.
Proc Natl Acad Sci U S A ; 109(14): 5376-81, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22431636

RESUMEN

Riboswitches are RNA sensors that regulate gene expression upon binding specific metabolites or ions. Bacterial riboswitches control gene expression primarily by promoting intrinsic transcription termination or by inhibiting translation initiation. We now report a third general mechanism of riboswitch action: governing the ability of the RNA-dependent helicase Rho to terminate transcription. We establish that Rho promotes transcription termination in the Mg(2+)-sensing mgtA riboswitch from Salmonella enterica serovar Typhimurium and the flavin mononucleotide-sensing ribB riboswitch from Escherichia coli when the corresponding riboswitch ligands are present. The Rho-specific inhibitor bicyclomycin enabled transcription of the coding regions at these two loci in bacteria experiencing repressing concentrations of the riboswitch ligands in vivo. A mutation in the mgtA leader that favors the "high Mg(2+)" conformation of the riboswitch promoted Rho-dependent transcription termination in vivo and in vitro and enhanced the ability of the RNA to stimulate Rho's ATPase activity in vitro. These effects were overcome by mutations in a C-rich region of the mRNA that is alternately folded at high and low Mg(2+), suggesting a role for this region in regulating the activity of Rho. Our results reveal a potentially widespread mode of gene regulation whereby riboswitches dictate whether a protein effector can interact with the transcription machinery to prematurely terminate transcription.


Asunto(s)
Riboswitch , Regiones Terminadoras Genéticas , Transcripción Genética/fisiología , Proteínas de Unión al GTP rho/fisiología , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico
11.
J Biol Chem ; 288(9): 6688-703, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23283976

RESUMEN

Precise transcription by cellular RNA polymerase requires the efficient removal of noncognate nucleotide residues that are occasionally incorporated. Mis-incorporation causes the transcription elongation complex to backtrack, releasing a single strand 3'-RNA segment bearing a noncognate residue, which is hydrolyzed by the active center that carries two Mg(2+) ions. However, in most x-ray structures only one Mg(2+) is present. This Mg(2+) is tightly bound to the active center aspartates, creating an inactive stable state. The first residue of the single strand RNA segment in the backtracked transcription elongation complex strongly promotes transcript hydrolytic cleavage by establishing a network of interactions that force a shift of stably bound Mg(2+) to release some of its aspartate coordination valences for binding to the second Mg(2+) thus enabling catalysis. Such a rearrangement that we call active center tuning (ACT) occurs when all recognition contacts of the active center-bound RNA segment are established and verified by tolerance to stress. Transcription factor Gre builds on the ACT mechanism in the same reaction by increasing the retention of the second Mg(2+) and by activating the attacking water, causing 3000-4000-fold reaction acceleration and strongly reinforcing proofreading. The unified mechanism for RNA synthesis and degradation by RNA polymerase predicts that ACT also executes NTP selection thereby contributing to high transcription fidelity.


Asunto(s)
Proteínas Bacterianas/química , ARN Polimerasas Dirigidas por ADN/química , Endonucleasas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Thermus/enzimología , Catálisis , Dominio Catalítico , Magnesio/química , ARN/biosíntesis , ARN/química , Transcripción Genética/fisiología
12.
Nat Struct Mol Biol ; 31(1): 141-149, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177674

RESUMEN

Gene expression in Escherichia coli is controlled by well-established mechanisms that activate or repress transcription. Here, we identify CedA as an unconventional transcription factor specifically associated with the RNA polymerase (RNAP) σ70 holoenzyme. Structural and biochemical analysis of CedA bound to RNAP reveal that it bridges distant domains of ß and σ70 subunits to stabilize an open-promoter complex. CedA does so without contacting DNA. We further show that cedA is strongly induced in response to amino acid starvation, oxidative stress and aminoglycosides. CedA provides a basal level of tolerance to these clinically relevant antibiotics, as well as to rifampicin and peroxide. Finally, we show that CedA modulates transcription of hundreds of bacterial genes, which explains its pleotropic effect on cell physiology and pathogenesis.


Asunto(s)
Proteínas de Escherichia coli , Factores Generales de Transcripción , Escherichia coli/metabolismo , Factor sigma/química , Factor sigma/genética , Factor sigma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Escherichia coli/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Factores Generales de Transcripción/genética , Factores Generales de Transcripción/metabolismo , Transcripción Genética , Proteínas Bacterianas/metabolismo
13.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38168453

RESUMEN

RNA polymerase II (pol II) can backtrack during transcription elongation, exposing the 3' end of nascent RNA. Nascent RNA sequencing can approximate the location of backtracking events that are quickly resolved; however, the extent and genome wide distribution of more persistent backtracking is unknown. Consequently, we developed a novel method to directly sequence the extruded, "backtracked" 3' RNA. Our data shows that pol II slides backwards more than 20 nucleotides in human cells and can persist in this backtracked state. Persistent backtracking mainly occurs where pol II pauses near promoters and intron-exon junctions, and is enriched in genes involved in translation, replication, and development, where gene expression is decreased if these events are unresolved. Histone genes are highly prone to persistent backtracking, and the resolution of such events is likely required for timely expression during cell division. These results demonstrate that persistent backtracking has the potential to affect diverse gene expression programs.

14.
Nat Struct Mol Biol ; 30(5): 600-607, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36997761

RESUMEN

Second messenger (p)ppGpp (collectively guanosine tetraphosphate and guanosine pentaphosphate) mediates bacterial adaptation to nutritional stress by modulating transcription initiation. More recently, ppGpp has been implicated in coupling transcription and DNA repair; however, the mechanism of ppGpp engagement remained elusive. Here we present structural, biochemical and genetic evidence that ppGpp controls Escherichia coli RNA polymerase (RNAP) during elongation via a specific site that is nonfunctional during initiation. Structure-guided mutagenesis renders the elongation (but not initiation) complex unresponsive to ppGpp and increases bacterial sensitivity to genotoxic agents and ultraviolet radiation. Thus, ppGpp binds RNAP at sites with distinct functions in initiation and elongation, with the latter being important for promoting DNA repair. Our data provide insights on the molecular mechanism of ppGpp-mediated adaptation during stress, and further highlight the intricate relationships between genome stability, stress responses and transcription.


Asunto(s)
Proteínas de Escherichia coli , Guanosina Tetrafosfato , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , Rayos Ultravioleta , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Reparación del ADN , Transcripción Genética , Regulación Bacteriana de la Expresión Génica
15.
J Biol Chem ; 286(46): 40395-400, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21976682

RESUMEN

Tagetitoxin (Tgt) inhibits multisubunit chloroplast, bacterial, and some eukaryotic RNA polymerases (RNAPs). A crystallographic structure of Tgt bound to bacterial RNAP apoenzyme shows that Tgt binds near the active site but does not explain why Tgt acts only at certain sites. To understand the Tgt mechanism, we constructed a structural model of Tgt bound to the transcription elongation complex. In this model, Tgt interacts with the ß' subunit trigger loop (TL), stabilizing it in an inactive conformation. We show that (i) substitutions of the Arg residue of TL contacted by Tgt confer resistance to inhibitor; (ii) Tgt inhibits RNAP translocation, which requires TL movements; and (iii) paused complexes and a "slow" enzyme, in which the TL likely folds into an altered conformation, are resistant to Tgt. Our studies highlight the role of TL as a target through which accessory proteins and antibiotics can alter the elongation complex dynamics.


Asunto(s)
Proteínas Bacterianas , ARN Polimerasas Dirigidas por ADN , Ácidos Dicarboxílicos/química , Modelos Moleculares , Compuestos Organofosforados/química , Thermus thermophilus/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/química , Estructura Secundaria de Proteína
16.
Nat Commun ; 13(1): 1702, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354807

RESUMEN

Global Genomic Repair (GGR) and Transcription-Coupled Repair (TCR) have been viewed, respectively, as major and minor sub-pathways of the nucleotide excision repair (NER) process that removes bulky lesions from the genome. Here we applied a next generation sequencing assay, CPD-seq, in E. coli to measure the levels of cyclobutane pyrimidine dimer (CPD) lesions before, during, and after UV-induced genotoxic stress, and, therefore, to determine the rate of genomic recovery by NER at a single nucleotide resolution. We find that active transcription is necessary for the repair of not only the template strand (TS), but also the non-template strand (NTS), and that the bulk of TCR is independent of Mfd - a DNA translocase that is thought to be necessary and sufficient for TCR in bacteria. We further show that repair of both TS and NTS is enhanced by increased readthrough past Rho-dependent terminators. We demonstrate that UV-induced genotoxic stress promotes global antitermination so that TCR is more accessible to the antisense, intergenic, and other low transcribed regions. Overall, our data suggest that GGR and TCR are essentially the same process required for complete repair of the bacterial genome.


Asunto(s)
Escherichia coli , Transcripción Genética , ADN , Reparación del ADN/genética , Escherichia coli/genética , Genoma Bacteriano/genética
17.
Commun Biol ; 5(1): 457, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35552496

RESUMEN

Transcriptional pausing is crucial for the timely expression of genetic information. Biochemical methods quantify the half-life of paused RNA polymerase (RNAP) by monitoring restarting complexes across time. However, this approach may produce apparent half-lives that are longer than true pause escape rates in biological contexts where multiple consecutive pause sites are present. We show here that the 6-nitropiperonyloxymethyl (NPOM) photolabile group provides an approach to monitor transcriptional pausing in biological systems containing multiple pause sites. We validate our approach using the well-studied his pause and show that an upstream RNA sequence modulates the pause half-life. NPOM was also used to study a transcriptional region within the Escherichia coli thiC riboswitch containing multiple consecutive pause sites. We find that an RNA hairpin structure located upstream to the region affects the half-life of the 5' most proximal pause site-but not of the 3' pause site-in contrast to results obtained using conventional approaches not preventing asynchronous transcription. Our results show that NPOM is a powerful tool to study transcription elongation dynamics within biologically complex systems.


Asunto(s)
Proteínas de Escherichia coli , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Conformación de Ácido Nucleico
18.
Nat Microbiol ; 6(11): 1410-1423, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34697460

RESUMEN

Mutations in the rifampicin (Rif)-binding site of RNA polymerase (RNAP) confer antibiotic resistance and often have global effects on transcription that compromise fitness and stress tolerance of resistant mutants. We suggested that the non-essential genome, through its impact on the bacterial transcription cycle, may represent an untapped source of targets for combination antimicrobial therapies. Using transposon sequencing, we carried out a genome-wide analysis of fitness cost in a clinically common rpoB H526Y mutant. We find that genes whose products enable increased transcription elongation rates compound the fitness costs of resistance whereas genes whose products function in cell wall synthesis and division mitigate it. We validate our findings by showing that the cell wall synthesis and division defects of rpoB H526Y result from an increased transcription elongation rate that is further exacerbated by the activity of the uracil salvage pathway and unresponsiveness of the mutant RNAP to the alarmone ppGpp. We applied our findings to identify drugs that inhibit more readily rpoB H526Y and other RifR alleles from the same phenotypic class. Thus, genome-wide analysis of fitness cost of antibiotic-resistant mutants should expedite the discovery of new combination therapies and delineate cellular pathways that underlie the molecular mechanisms of cost.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Rifampin/farmacología , Bacterias/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Farmacorresistencia Bacteriana , Genoma Bacteriano , Mutación , Transcripción Genética
19.
Methods Mol Biol ; 540: 39-51, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19381551

RESUMEN

Natural RNA sensors of small molecules (a.k.a. riboswitches) regulate numerous metabolic genes. In bacteria, these RNA elements control transcription termination and translation initiation by changing the folding pathway of nascent RNA upon direct binding of a metabolite. To identify and study riboswitches we used in vitro reconstituted solid-phase transcription elongation/termination system. This approach allows for direct monitoring of ligand binding and riboswitch functioning, establishing the working concentration of a ligand as a function of RNA polymerase speed, and also probing RNA structure of the riboswitch. Using this system we have been able to identify and characterize first several riboswitches including those involved in vitamin biosynthesis and sulfur metabolism. The system can be utilized to facilitate biochemical studies of riboswitches in general, i.e., to simplify analysis of riboswitches that are not necessarily involved in transcriptional control.


Asunto(s)
Biología Molecular/métodos , ARN no Traducido/metabolismo , Transcripción Genética , Bacillus subtilis/genética , ADN Bacteriano/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Secuencias Reguladoras de Ácido Ribonucleico/genética , Moldes Genéticos
20.
Methods Enzymol ; 591: 287-306, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28645373

RESUMEN

Transcription-coupled repair (TCR) serves an important role in preserving genome integrity and maintaining fidelity of replication. Coupling transcription to DNA repair requires a coordinated action of several factors, including transcribing RNA polymerase and various transcription modulators and repair proteins. To study TCR in molecular detail, it is important to employ defined protein complexes in vitro and defined genetic backgrounds in vivo. In this chapter, we present methods to interrogate various aspects of TCR at different stages of repair. We describe promoter-initiated and nucleic acid scaffold-initiated transcription as valid approaches to recapitulate various stages of TCR, and discuss their strengths and weaknesses. We also outline an approach to study TCR in its cellular context using Escherichia coli as a model system.


Asunto(s)
Reparación del ADN , Transcripción Genética , Ácidos Nucleicos/química , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA