Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39137777

RESUMEN

Tumors growing in metabolically challenged environments, such as glioblastoma in the brain, are particularly reliant on crosstalk with their tumor microenvironment (TME) to satisfy their high energetic needs. To study the intricacies of this metabolic interplay, we interrogated the heterogeneity of the glioblastoma TME using single-cell and multi-omics analyses and identified metabolically rewired tumor-associated macrophage (TAM) subpopulations with pro-tumorigenic properties. These TAM subsets, termed lipid-laden macrophages (LLMs) to reflect their cholesterol accumulation, are epigenetically rewired, display immunosuppressive features, and are enriched in the aggressive mesenchymal glioblastoma subtype. Engulfment of cholesterol-rich myelin debris endows subsets of TAMs to acquire an LLM phenotype. Subsequently, LLMs directly transfer myelin-derived lipids to cancer cells in an LXR/Abca1-dependent manner, thereby fueling the heightened metabolic demands of mesenchymal glioblastoma. Our work provides an in-depth understanding of the immune-metabolic interplay during glioblastoma progression, thereby laying a framework to unveil targetable metabolic vulnerabilities in glioblastoma.

2.
Semin Cancer Biol ; 86(Pt 3): 41-56, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35569742

RESUMEN

The intricate cross-talks between tumor cells and their microenvironment play a key role in cancer progression and resistance to treatment. In recent years, targeting pro-tumorigenic components of the tumor microenvironment (TME) has emerged as a tantalizing strategy to improve the efficacy of standard-of-care (SOC) treatments, particularly for hard-to-treat cancers such as glioblastoma. In this review, we explore how the distinct microenvironmental niches characteristic of the glioblastoma TME shape response to therapy. In particular, we delve into the interplay between tumor-associated macrophages (TAM) and glioblastoma cells within angiogenic and hypoxic niches, and interrogate their dynamic co-evolution upon SOC therapies that fuels malignancy. Resolving the complexity of therapy-induced alterations in the glioblastoma TME and their impact on disease relapse is a stepping stone to identify targetable pro-tumorigenic pathways and TAM subsets, and may open the way to efficient combination therapies that will improve clinical outcomes.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/tratamiento farmacológico , Microambiente Tumoral/fisiología , Macrófagos/metabolismo , Carcinogénesis/metabolismo , Hipoxia/metabolismo
3.
Front Cell Dev Biol ; 8: 668, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793603

RESUMEN

The interactions of leukemia cells with the bone marrow (BM) microenvironment is critical for disease progression and resistance to treatment. We have recently found that the vascular adhesion molecule E-(endothelial)-selectin is a key niche component that directly mediates acute myeloid leukemia (AML) chemo-resistance, revealing E-selectin as a promising therapeutic target. To understand how E-selectin promotes AML survival, we investigated the potential receptors on AML cells involved in E-selectin-mediated chemo-resistance. Using CRISPR-Cas9 gene editing to selectively suppress canonical E-selectin receptors CD44 or P-selectin glycoprotein ligand-1 (PSGL-1/CD162) from human AML cell line KG1a, we show that CD162, but not CD44, is necessary for E-selectin-mediated chemo-resistance in vitro. Using preclinical models of murine AML, we then demonstrate that absence of CD162 on AML cell surface leads to a significant delay in the onset of leukemia and a significant increase in sensitivity to chemotherapy in vivo associated with a more rapid in vivo proliferation compared to wild-type AML and a lower BM retention. Together, these data reveal for the first time that CD162 is a key AML cell surface receptor involved in AML progression, BM retention and chemo-resistance. These findings highlight specific blockade of AML cell surface CD162 as a potential novel niche-based strategy to improve the efficacy of AML therapy.

4.
Nat Commun ; 11(1): 2042, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341362

RESUMEN

The endothelial cell adhesion molecule E-selectin is a key component of the bone marrow hematopoietic stem cell (HSC) vascular niche regulating balance between HSC self-renewal and commitment. We now report in contrast, E-selectin directly triggers signaling pathways that promote malignant cell survival and regeneration. Using acute myeloid leukemia (AML) mouse models, we show AML blasts release inflammatory mediators that upregulate endothelial niche E-selectin expression. Alterations in cell-surface glycosylation associated with oncogenesis enhances AML blast binding to E-selectin and enable promotion of pro-survival signaling through AKT/NF-κB pathways. In vivo AML blasts with highest E-selectin binding potential are 12-fold more likely to survive chemotherapy and main contributors to disease relapse. Absence (in Sele-/- hosts) or therapeutic blockade of E-selectin using small molecule mimetic GMI-1271/Uproleselan effectively inhibits this niche-mediated pro-survival signaling, dampens AML blast regeneration, and strongly synergizes with chemotherapy, doubling the duration of mouse survival over chemotherapy alone, whilst protecting endogenous HSC.


Asunto(s)
Resistencia a Antineoplásicos , Selectina E/antagonistas & inhibidores , Selectina E/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Médula Ósea , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Femenino , Glucolípidos/uso terapéutico , Glicosilación , Células Madre Hematopoyéticas/citología , Humanos , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
5.
Stem Cell Rev Rep ; 12(2): 171-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26779895

RESUMEN

The cornea provides two thirds of the refractive power of the eye and protection against insults such as infection and injury. The outermost tissue of the cornea is renewed by stem cells located in the limbus. Depletion or destruction of these stem cells may lead to blinding limbal stem cell deficiency (LSCD) that concerns millions of patients around the world. Innovative strategies based on adult stem cell therapies have been developed in the recent years but they are still facing numerous unresolved issues, and the long term results can be deceiving. Today there is a clear need to improve these therapies, and/or to develop new approaches for the treatment of LSCD. Here, we review the current cell-based therapies used for the treatment of ocular diseases, and discuss the potential of pluripotent stem cells (embryonic and induced pluripotent stem cells) in corneal repair. As the secretion of paracrine factors is known to have a crucial role in maintaining stem cell homeostasis and in wound repair, we also consider the therapeutic potential of a promising novel pathway, the exosomes. Exosomes are nano-sized vesicles that have the ability to transfer RNAs and proteins to recipient cells, and several studies demonstrated their role in cell protection and wound healing. Exosomes could circumvent the hurdles of stem-cell based approaches, and they could become a strong candidate as an alternative therapy for ocular surface diseases.


Asunto(s)
Enfermedades de la Córnea/terapia , Epitelio Corneal/citología , Células Madre Pluripotentes/citología , Animales , Humanos , Trasplante de Células Madre/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA