Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Neurobiol Dis ; 168: 105717, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35385769

RESUMEN

Chronic psychological stress affects brain regions involved in memory such as the hippocampus and accelerates age-related cognitive decline, including in Alzheimer's disease and vascular dementia. However, little is known about how chronic stress impacts hippocampal vascular function that is critically involved in maintaining neurocognitive health that could contribute to stress-related memory dysfunction. Here, we used a novel experimental rat model that mimics the neuroendocrine and cardiovascular aspects of chronic stress to determine how the neuroendocrine components of the stress response affect hippocampal function. We studied both male and female rats to determine potential sex differences in the susceptibility of the hippocampus and its vasculature to neuroendocrine stress-induced dysfunction. We show that activation of neuroendocrine stress pathways impaired the vasoreactivity of hippocampal arterioles to mediators involved in coupling neuronal activity with local blood flow that was associated with impaired memory function. Interestingly, we found more hippocampal arteriolar dysfunction and scarcer hippocampal microvasculature in male compared to female rats that was associated with greater memory impairment, suggesting the male sex may be at increased risk of neuroendocrine-derived hippocampal dysfunction during chronic stress. Overall, this study revealed the therapeutic potential of targeting hippocampal arterioles to prevent or slow memory decline in the setting of prolonged and/or unavoidable stress.


Asunto(s)
Enfermedad de Alzheimer , Demencia Vascular , Enfermedad de Alzheimer/metabolismo , Animales , Demencia Vascular/metabolismo , Femenino , Hipocampo/metabolismo , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Neuronas/metabolismo , Ratas
2.
J Neurophysiol ; 126(4): 1209-1220, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34406887

RESUMEN

Presympathetic neurons in the paraventricular nucleus of the hypothalamus (PVN) play a key role in cardiovascular regulation. We have previously shown that brain-derived neurotrophic factor (BDNF), acting in the PVN, increases sympathetic activity and blood pressure and serves as a key regulator of stress-induced hypertensive responses. BDNF is known to alter glutamatergic and GABA-ergic signaling broadly in the central nervous system, but whether BDNF has similar actions in the PVN remains to be investigated. Here, we tested the hypothesis that increased BDNF expression in the PVN elevates blood pressure by enhancing N-methyl-d-aspartate (NMDA) receptor (NMDAR)- and inhibiting GABAA receptor (GABAAR)-mediated signaling. Sprague-Dawley rats received bilateral PVN injections of AAV2 viral vectors expressing green fluorescent protein (GFP) or BDNF. Three weeks later, cardiovascular responses to PVN injections of NMDAR and GABAAR agonists and antagonists were recorded under α-chloralose-urethane anesthesia. In addition, expressions of excitatory and inhibitory signaling components in the PVN were assessed using immunofluorescence. Our results showed that NMDAR inhibition led to a greater decrease in blood pressure in the BDNF vs. GFP group, while GABAAR inhibition led to greater increases in blood pressure in the GFP group compared to BDNF. Conversely, GABAAR activation decreased blood pressure significantly more in GFP vs. BDNF rats. In addition, immunoreactivity of NMDAR1 was upregulated, while GABAAR-α1 and K+/Cl- cotransporter 2 were downregulated by BDNF overexpression in the PVN. In summary, our findings indicate that hypertensive actions of BDNF within the PVN are mediated, at least in part, by augmented NMDAR and reduced GABAAR signaling.NEW & NOTEWORTHY We have shown that BDNF, acting in the PVN, elevates blood pressure in part by augmenting NMDA receptor-mediated excitatory input and by diminishing GABAA receptor-mediated inhibitory input to PVN neurons. In addition, we demonstrate that elevated BDNF expression in the PVN upregulates NMDA receptor immunoreactivity and downregulates GABAA receptor as well as KCC2 transporter immunoreactivity.


Asunto(s)
Presión Sanguínea/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fenómenos Electrofisiológicos/fisiología , Núcleo Hipotalámico Paraventricular/metabolismo , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema Nervioso Simpático/fisiología , Animales , Presión Sanguínea/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/farmacología , Fenómenos Electrofisiológicos/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sistema Nervioso Simpático/efectos de los fármacos
3.
Am J Physiol Heart Circ Physiol ; 317(6): H1258-H1271, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31603352

RESUMEN

Brain-derived neurotrophic factor (BDNF) is upregulated in the paraventricular nucleus of the hypothalamus (PVN) in response to hypertensive stimuli such as stress and hyperosmolality, and BDNF acting in the PVN plays a key role in elevating sympathetic activity and blood pressure. However, downstream mechanisms mediating these effects remain unclear. We tested the hypothesis that BDNF increases blood pressure, in part by diminishing inhibitory hypotensive input from nucleus of the solitary tract (NTS) catecholaminergic neurons projecting to the PVN. Male Sprague-Dawley rats received bilateral PVN injections of viral vectors expressing either green fluorescent protein (GFP) or BDNF and bilateral NTS injections of vehicle or anti-dopamine-ß-hydroxylase-conjugated saporin (DSAP), a neurotoxin that selectively lesions noradrenergic and adrenergic neurons. BDNF overexpression in the PVN without NTS lesioning significantly increased mean arterial pressure (MAP) in awake animals by 18.7 ± 1.8 mmHg. DSAP treatment also increased MAP in the GFP group, by 9.8 ± 3.2 mmHg, but failed to affect MAP in the BDNF group, indicating a BDNF-induced loss of NTS catecholaminergic hypotensive effects. In addition, in α-chloralose-urethane-anesthetized rats, hypotensive responses to PVN injections of the ß-adrenergic agonist isoprenaline were significantly attenuated by BDNF overexpression, whereas PVN injections of phenylephrine had no effect on blood pressure. BDNF treatment was also found to significantly reduce ß1-adrenergic receptor mRNA expression in the PVN, whereas expression of other adrenergic receptors was unaffected. In summary, increased BDNF expression in the PVN elevates blood pressure, in part by downregulating ß-receptor signaling and diminishing hypotensive catecholaminergic input from the NTS to the PVN.NEW & NOTEWORTHY We have shown that BDNF, a key hypothalamic regulator of blood pressure, disrupts catecholaminergic signaling between the NTS and the PVN by reducing the responsiveness of PVN neurons to inhibitory hypotensive ß-adrenergic input from the NTS. This may be occurring partly via BDNF-mediated downregulation of ß1-adrenergic receptor expression in the PVN and results in an increase in blood pressure.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipertensión/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Regulación hacia Abajo , Isoproterenol/farmacología , Masculino , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/genética , Saporinas/farmacología , Transmisión Sináptica
4.
J Neurophysiol ; 120(2): 633-643, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29694277

RESUMEN

Brain-derived neurotrophic factor (BDNF) expression increases in the paraventricular nucleus of the hypothalamus (PVN) during stress, and our recent studies indicate that BDNF induces sympathoexcitatory and hypertensive responses when injected acutely or overexpressed chronically in the PVN. However, it remained to be investigated whether BDNF is involved in the mediation of stress-induced cardiovascular responses. Here we tested the hypothesis that inhibition of the high-affinity BDNF receptor TrkB in the PVN diminishes acute stress-induced cardiovascular responses. Male Sprague-Dawley rats were equipped with radiotelemetric transmitters for blood pressure measurement. BDNF-TrkB signaling was selectively inhibited by viral vector-mediated bilateral PVN overexpression of a dominant-negative truncated TrkB receptor (TrkB.T1, n = 7), while control animals ( n = 7) received green fluorescent protein (GFP)-expressing vector injections. Rats were subjected to acute water and restraint stress 3-4 wk after vector injections. We found that body weight, food intake, baseline mean arterial pressure (MAP), and heart rate were unaffected by TrkB.T1 overexpression. However, peak MAP increases were significantly reduced in the TrkB.T1 group compared with GFP both during water stress (GFP: 39 ± 2 mmHg, TrkB.T1: 27 ± 4 mmHg; P < 0.05) and restraint stress (GFP: 41 ± 3 mmHg, TrkB.T1: 34 ± 2 mmHg; P < 0.05). Average MAP elevations during the poststress period were also significantly reduced after both water and restraint stress in the TrkB.T1 group compared with GFP. In contrast, heart rate elevations to both stressors remained unaffected by TrkB.T1 overexpression. Our results demonstrate that activation of BDNF high-affinity TrkB receptors within the PVN is a major contributor to acute stress-induced blood pressure elevations. NEW & NOTEWORTHY We have shown that inhibition of the high-affinity brain-derived neurotrophic factor receptor TrkB in the paraventricular nucleus of the hypothalamus significantly reduces blood pressure elevations to acute stress without having a significant impact on resting blood pressure, body weight, and food intake.


Asunto(s)
Presión Arterial , Factor Neurotrófico Derivado del Encéfalo/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Receptor trkB/fisiología , Estrés Psicológico/fisiopatología , Animales , Ingestión de Alimentos , Frecuencia Cardíaca , Masculino , Ratas Sprague-Dawley , Ratas Transgénicas , Transducción de Señal
5.
Pharmacology ; 100(3-4): 105-114, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28521325

RESUMEN

AIM: The aim of this study was to investigate the effect of a high salt (HS) diet on age-related changes in blood pressure (BP) and the possible role played by regulatory central mechanisms. METHODS: Young (5 months) and old (27 months) male Fischer 344 × Brown Norway (F344/BN) rats were fed standard chow or 8% HS diet for 12 days. BP and heart rate (HR) were measured by telemetry. RESULTS: Mean arterial BP (MAP) was significantly elevated in old rats during the day and night when compared with young animals. The HS diet further elevated MAP in both age groups, and the increase was more pronounced in the old animals, while HR was not altered by age or HS diet. In addition, cardiovascular responses to restraint stress were diminished in the old when compared with the young and were unchanged with HS diet in either age group. Both age and the HS diet elevated the adrenomedullary mRNA levels of tyrosine hydroxylase, an indicator for sympathoexcitation. HS diet enhanced intracerebroventricular angiotensin II (AngII)-induced BP and HR elevations in both age groups. AngII type 1 receptor mRNA increased significantly in the hypothalamus with age and HS diet. Furthermore, hypothalamic p22phox mRNA and gp91phox protein, subunits of NADPH oxidase, as well as NADPH oxidase activity increased with the HS diet in the old animals, whereas antioxidant enzymes that decreased with age yet remained unaltered with the HS diet. CONCLUSION: Our findings indicate that sensitivity of BP to HS diet increases with age, and that central AngII-induced pressor responses are diminished in old rats compared with the young both under control conditions and during HS diet treatment. These changes are paralleled by increases in the expression and NADPH oxidase activity in the hypothalamus, possibly leading to central oxidative stress-mediated sympathoexcitation and high BP.


Asunto(s)
Envejecimiento/fisiología , Hipertensión/fisiopatología , Cloruro de Sodio Dietético , Animales , Presión Sanguínea , Hipotálamo/metabolismo , Locomoción , Masculino , NADPH Oxidasa 2/metabolismo , NADPH Oxidasas/metabolismo , Oxidación-Reducción , ARN Mensajero/metabolismo , Ratas Endogámicas BN , Ratas Endogámicas F344 , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/fisiología , Restricción Física , Transducción de Señal , Estrés Psicológico/fisiopatología , Tirosina 3-Monooxigenasa/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 308(6): H612-22, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25576628

RESUMEN

Brain-derived neurotrophic factor (BDNF) expression increases in the paraventricular nucleus of the hypothalamus (PVN) in response to hypertensive stimuli including stress and hyperosmolarity. However, it is unclear whether BDNF in the PVN contributes to increases in blood pressure (BP). We tested the hypothesis that increased BDNF levels within the PVN would elevate baseline BP and heart rate (HR) and cardiovascular stress responses by altering central angiotensin signaling. BP was recorded using radiotelemetry in male Sprague-Dawley rats after bilateral PVN injections of adeno-associated viral vectors expressing green fluorescent protein (GFP) or myc epitope-tagged BDNF fusion protein. Cardiovascular responses to acute stress were evaluated 3 to 4 wk after injections. Additional GFP and BDNF-treated animals were equipped with osmotic pumps for intracerebroventricular infusion of saline or the angiotensin type-1 receptor (AT1R) inhibitor losartan (15 µg·0.5 µl(-1)·h(-1)). BDNF treatment significantly increased baseline BP (121 ± 3 mmHg vs. 99 ± 2 mmHg in GFP), HR (394 ± 9 beats/min vs. 314 ± 4 beats/min in GFP), and sympathetic tone indicated by HR- and BP-variability analysis and adrenomedullary tyrosine hydroxylase protein expression. In contrast, body weight and BP elevations to acute stressors decreased. BDNF upregulated AT1R mRNA by ∼80% and downregulated Mas receptor mRNA by ∼50% in the PVN, and losartan infusion partially inhibited weight loss and increases in BP and HR in BDNF-treated animals without any effect in GFP rats. Our results demonstrate that BDNF overexpression in the PVN results in sympathoexcitation, BP and HR elevations, and weight loss that are mediated, at least in part, by modulating angiotensin signaling in the PVN.


Asunto(s)
Angiotensinas/metabolismo , Presión Sanguínea , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Sistema Cardiovascular/inervación , Hipertensión/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Sistema Renina-Angiotensina , Transducción de Señal , Sistema Nervioso Simpático/fisiopatología , Médula Suprarrenal/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/administración & dosificación , Animales , Presión Sanguínea/efectos de los fármacos , Peso Corporal , Factor Neurotrófico Derivado del Encéfalo/genética , Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos , Frecuencia Cardíaca , Hipertensión/genética , Hipertensión/fisiopatología , Infusiones Intraventriculares , Masculino , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo , Regulación hacia Arriba
7.
Am J Physiol Heart Circ Physiol ; 309(4): H634-45, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26071542

RESUMEN

Macrophage migration inhibitory factor (MIF) counteracts pressor effects of angiotensin II (ANG II) in the paraventricular nucleus of the hypothalamus (PVN) in normotensive rats, but this mechanism is absent in spontaneously hypertensive rats (SHRs) due to a lack of MIF in PVN neurons. Since endogenous ANG II in the PVN modulates stress reactivity, we tested the hypothesis that replacement of MIF in PVN neurons would reduce baseline blood pressure and inhibit stress-induced increases in blood pressure and plasma corticosterone in adult male SHRs. Radiotelemetry transmitters were implanted to measure blood pressure, and then an adeno-associated viral vector expressing either enhanced green fluorescent protein (GFP) or MIF was injected bilaterally into the PVN. Cardiovascular responses to a 15-min water stress (1-cm deep, 25°C) and a 60-min restraint stress were evaluated 3-4 wk later. MIF treatment in the PVN attenuated average restraint-induced increases in blood pressure (37.4 ± 2.0 and 27.6 ± 3.5 mmHg in GFP and MIF groups, respectively, P < 0.05) and corticosterone (42 ± 2 and 36 ± 3 µg/dl in GFP and MIF groups, respectively, P < 0.05). MIF treatment in the PVN also reduced stress-induced elevations in the number of c-Fos-positive cells in the rostral ventrolateral medulla (71 ± 5 in GFP and 47 ± 5 in MIF SHRs, P < 0.01) and corticotropin-releasing factor mRNA expression in the PVN. However, MIF had no significant effects on the cardiovascular responses to water stress in SHRs or to either stress in Sprague-Dawley rats. Therefore, viral vector-mediated restoration of MIF in PVN neurons of SHRs attenuates blood pressure and hypothalamic pituitary adrenal axis responses to stress.


Asunto(s)
Presión Sanguínea , Sistema Hipotálamo-Hipofisario/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Estrés Psicológico/metabolismo , Animales , Sistema Hipotálamo-Hipofisario/fisiopatología , Oxidorreductasas Intramoleculares/genética , Factores Inhibidores de la Migración de Macrófagos/genética , Masculino , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/fisiopatología , Sistema Hipófiso-Suprarrenal/fisiopatología , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/fisiopatología
8.
J Physiol ; 590(19): 4881-95, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22753543

RESUMEN

Catecholaminergic neurons within the central nervous system are an integral part of stress-related neurocircuitry, and the nucleus of the solitary tract (NTS) plays a critical role in cardiovascular regulation. We tested the hypothesis that NTS catecholaminergic neurons attenuate psychological stress-induced increases in blood pressure and promote neuroendocrine activation in response to psychological stress.Anti-dopamine-ß-hydroxylase antibody conjugated to the neurotoxin saporin (DSAP) or saline vehicle was microinjected into the NTS to lesion catecholaminergic neurons in male Sprague-Dawley rats, and 17 days later the rats were subjected to 60 min of restraint stress for five consecutive days. DSAP treatment significantly enhanced the integrated increase in mean arterial pressure during restraint on the first (800 ± 128 and 1115 ± 116 mmHg (min) for saline- and DSAP-treated rats) and fifth days (655 ± 116 and 1035 ± 113 mmHg (min) for saline- and DSAP-treated rats; P<0.01 for overall effect of DSAP treatment) of restraint. In contrast, after 60 min of restraint plasma corticosterone concentration was significantly lower in DSAP-treated compared with saline-treated rats (25.9 ± 7 compared with 46.8 ± 7 µg dl(-1) for DSAP- and saline-treated rats; P <0.05). DSAP treatment also significantly reduced baseline plasma adrenaline concentration (403 ± 69 compared with 73 ± 29 pg ml(-1) for saline- and DSAP-treated rats), but did not alter the magnitude of the adrenaline response to restraint. The data suggest that NTS catecholaminergic neurons normally inhibit the arterial pressure response, but help maintain the corticosterone response to restraint stress.


Asunto(s)
Presión Sanguínea/fisiología , Neuronas/fisiología , Núcleo Solitario/fisiopatología , Estrés Psicológico/fisiopatología , Animales , Anticuerpos/química , Anticuerpos/farmacología , Corticosterona/sangre , Dopamina beta-Hidroxilasa/fisiología , Epinefrina/sangre , Frecuencia Cardíaca/fisiología , Masculino , Norepinefrina/fisiología , Ratas , Ratas Sprague-Dawley , Restricción Física , Proteínas Inactivadoras de Ribosomas Tipo 1/química , Proteínas Inactivadoras de Ribosomas Tipo 1/farmacología , Saporinas
9.
Am J Physiol Heart Circ Physiol ; 301(1): H164-72, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21551274

RESUMEN

Aging and obesity both have a significant impact on central blood pressure (BP) regulation, and previous studies indicated that changes in central redox signaling with age may affect high-fat (HF) diet-induced cardiovascular responses. Therefore, we investigated the effects of 60% HF feeding on BP regulation in young adult (5 mo) and old (26 mo) Fischer-344 × Brown-Norway rats. Radiotelemetric transmitters were implanted to measure BP, heart rate (HR), locomotor activity, and spontaneous baroreflex sensitivity. Expression and activity of NADPH oxidase and ANG II type 1 receptor were assessed in the hypothalamus and in the nucleus tractus solitarii. Old animals gained more weight on HF diet compared with young, whereas central NADPH oxidase expression and activity elevated similarly in the two age groups. After an initial hypotensive and tachycardic response during the first week of HF feeding, BP in young animals increased and became significantly elevated after 6 wk of HF feeding. In contrast, BP in old animals remained depressed. Nighttime HR and locomotor activity decreased in both young and old rats fed with HF diet, but these changes were more significant in young rats. As a result, amplitudes of circadian variation of BP, HR, and activity that were originally higher in young rats declined significantly and became similar in the two age groups. In conclusion, our experiments led to the surprising finding that HF diet has a more serious impact on cardiovascular regulation in young animals compared with old.


Asunto(s)
Envejecimiento/fisiología , Grasas de la Dieta , Hipertensión/fisiopatología , Obesidad/fisiopatología , Animales , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Western Blotting , Peso Corporal/fisiología , Colesterol/sangre , Dieta , Frecuencia Cardíaca/fisiología , Hipertensión/etiología , Hipotálamo/metabolismo , Masculino , Actividad Motora/fisiología , NADPH Oxidasas/metabolismo , Obesidad/etiología , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344 , Receptor de Angiotensina Tipo 1/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Núcleo Solitario/fisiología , Telemetría
10.
Biochem Biophys Res Commun ; 408(3): 454-8, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21527245

RESUMEN

Aging is associated with oxidative damage and an imbalance in redox signaling in a variety of tissues, yet little is known about the extent of age-induced oxidative stress in the sympathoadrenal system. Lifelong caloric restriction has been shown to lower levels of oxidative stress and slow the aging process. Therefore, the aims of this study were twofold: (1) to investigate the effect of aging on oxidative stress in the adrenal medulla and hypothalamus and (2) determine if lifelong 40% caloric restriction (CR) reverses the adverse effects of age-induced oxidative stress in the sympathetic adrenomedullary system. Adult (18months) and very old (38months) male Fischer 344 x Brown Norway rats were divided into ad libitum or 40% CR groups and parameters of oxidative stress were analyzed in the adrenal medulla and the hypothalamus. A significant age-dependent increase in lipid peroxidation (+20%, P<0.05) and tyrosine nitration (+111%, P<0.001) were observed in the adrenal medulla while age resulted in a reduction in the protein expression of key antioxidant enzymes, CuZnSOD (-27%, P<0.01) and catalase (-27%, P<0.05) in the hypothalamus. Lifelong CR completely prevented the age-induced increase in lipid peroxidation in the adrenal medulla and restored the age-related decline in antioxidant enzymes in the hypothalamus. These data indicate that aging results in a significant increase in oxidative stress in the sympathoadrenal system. Importantly, lifelong CR restored the age-related changes in oxidative stress in the adrenal medulla and hypothalamus. Caloric restriction could be a potential non-pharmacological intervention to prevent increased oxidative stress in the sympathetic adrenomedullary system with age.


Asunto(s)
Médula Suprarrenal/fisiología , Envejecimiento/fisiología , Restricción Calórica , Hipotálamo/fisiología , Estrés Oxidativo , Sistema Nervioso Simpático/fisiología , Médula Suprarrenal/enzimología , Factores de Edad , Aldehídos/metabolismo , Animales , Peso Corporal , Hipotálamo/enzimología , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344 , Superóxido Dismutasa/biosíntesis
11.
Mol Ther ; 17(6): 980-91, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19277011

RESUMEN

Intraventricular administration of glial cell line-derived neurotrophic factor (GDNF) in primate and humans to study Parkinson's disease (PD) has revealed the potential for GDNF to induce weight loss. Our previous data indicate that bilateral continuous hypothalamic GDNF overexpression via recombinant adeno-associated virus (rAAV) results in significant failure to gain weight in young rats and weight loss in aged rats. Based on these previous results, we hypothesized that because the nigrostriatal tract passes through the lateral hypothalamus, motor hyperactivity mediated by nigrostriatal dopamine (DA) may have been responsible for the previously observed effect on body weight. In this study, we compared bilateral injections of rAAV2/5-GDNF in hypothalamus versus substantia nigra (SN) in aged Brown-Norway X Fisher 344 rats. Nigrostriatal GDNF overexpression resulted in significantly greater weight loss than rats treated in hypothalamus. The nigral or hypothalamic GDNF-induced weight loss was unrelated to motor activity levels of the rats, though some of the weight loss could be attributed to a transient reduction in food intake. Forebrain DA levels did not account for the observed effects on body weight, although GDNF-induced increases in nucleus accumbens DA may have partially contributed to this effect in the hypothalamic GDNF-treated group. However, only nigrostriatal GDNF overexpression induced activation of phosphorylated extracellular signal-regulated kinase (p-ERK) in a small population of corticotrophin-releasing factor [corticotrophin-releasing hormone (CRH)] neurons located specifically in the medial parvocellullar division (MPD) of the paraventricular nucleus of the hypothalamus. Activation of these hypothalamic CRH neurons likely accounted for the observed metabolic effects leading to weight loss in obese rats.


Asunto(s)
Envejecimiento/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Obesidad/genética , Pérdida de Peso/genética , Adiposidad/genética , Animales , Western Blotting , Peso Corporal/genética , Catecolaminas/metabolismo , Cromatografía Líquida de Alta Presión , Dependovirus/genética , Dopamina/metabolismo , Ingestión de Alimentos/genética , Ensayo de Inmunoadsorción Enzimática , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Hipotálamo/metabolismo , Inmunohistoquímica , Masculino , Neuropéptido Y/metabolismo , Obesidad/metabolismo , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sustancia Negra/metabolismo
12.
Exp Gerontol ; 43(8): 806-9, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18522866

RESUMEN

Expression of catecholamine biosynthesizing enzymes, tyrosine hydroxylase (TH) and dopamine beta hydroxylase (DbetaH) increase with age in the adrenal medulla, however, the underlying mechanisms are unclear. In the present study, we examined the effect of peripheral angiotensin II (AngII) on the expression of TH and DbetaH, in the adrenal medulla of young (6 mo) and old (23 mo) Fischer-344 rats. Saline or AngII (230 ng/kg/min sc) was infused for 3 days using osmotic minipumps. Adrenomedullary TH and DbetaH mRNA levels increased significantly with age, and while AngII reduced the expression of these enzymes in young animals, it had no such effect in the old animals. Neuropeptide Y (NPY), which is co-released with catecholamines in the adrenal medulla and stimulates the synthesis of TH and DbetaH, was also upregulated with age and downregulated in response to AngII in young rats. However, in the old animals, the already elevated NPY expression remained unchanged following AngII treatment. This data indicate that the hypertensive effect of peripheral AngII is compensated by an inhibition of adrenomedullary catecholamine biosynthesis in young animals, but this mechanism is impaired in senescence, potentially contributing to the age-related increase in catecholamine biosynthesis.


Asunto(s)
Médula Suprarrenal/enzimología , Envejecimiento/fisiología , Angiotensina II/farmacología , Dopamina beta-Hidroxilasa/biosíntesis , Tirosina 3-Monooxigenasa/biosíntesis , Médula Suprarrenal/efectos de los fármacos , Animales , Dopamina beta-Hidroxilasa/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Masculino , Neuropéptido Y/biosíntesis , Neuropéptido Y/genética , ARN Mensajero/genética , Ratas , Ratas Endogámicas F344 , Tirosina 3-Monooxigenasa/genética
13.
J Hypertens ; 25(12): 2471-8, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17984669

RESUMEN

OBJECTIVE: The present study employed a rat leptin antagonist to evaluate the role of elevated leptin in obesity-associated hypertension. METHODS: First, leptin was overexpressed in the hypothalamus of lean rats for 155 days through the administration of a recombinant adeno-associated viral-mediated central vector-encoding leptin. Then a leptin antagonist was infused intracerebroventricularly for 14 days. In a second experiment, rats were fed with a high-fat diet or chow for 5 months, then the leptin antagonist was infused intracerebroventricularly for 14 days. RESULTS: Hypothalamic overexpression of leptin elevated blood pressure by 18 mmHg, but 14-day central infusion of the leptin antagonist reversed leptin-induced hypertension. High-fat feeding increased blood pressure (by approximately 8-9 mmHg) and tyrosine hydroxylase activity (by 76%) in superior cervical ganglia compared with chow feeding. Leptin antagonist infusion accelerated weight gain, food intake, and adiposity in high-fat-fed rats compared with chow-fed rats, and tyrosine hydroxylase activity was also reversed in the superior cervical ganglia. Elevated mean arterial pressure was not affected, although there was a small decrease in heart rate in both chow and high-fat-fed groups. CONCLUSION: Central overexpression of leptin leads to hypertension that can be reversed by a leptin antagonist. In contrast, this leptin antagonist does not reverse the high-fat feeding-induced elevation of blood pressure, even though there is apparent blockade of other leptin-mediated metabolic and sympatho-excitatory responses.


Asunto(s)
Hipertensión/tratamiento farmacológico , Leptina/antagonistas & inhibidores , Animales , Dependovirus/genética , Grasas de la Dieta/administración & dosificación , Expresión Génica , Vectores Genéticos , Hipertensión/complicaciones , Hipertensión/fisiopatología , Hipotálamo/fisiopatología , Inyecciones Intraventriculares , Leptina/análogos & derivados , Leptina/genética , Leptina/fisiología , Masculino , Mutagénesis Sitio-Dirigida , Obesidad/complicaciones , Fosforilación , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Proteínas Recombinantes/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
14.
Exp Gerontol ; 42(8): 745-52, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17540525

RESUMEN

We examined if life-long mild caloric restriction (CR) alone or with voluntary exercise prevents the age-related changes in catecholamine biosynthetic enzyme levels in the adrenal medulla and hypothalamus. Ten-week-old Fisher-344 rats were assigned to: sedentary; sedentary+8% CR; or 8% CR+wheel running. Rats were euthanized at 6 or 24 months of age. Tyrosine hydroxylase (TH) mRNA expression was 4.4-fold higher in the adrenal medullae and 60% lower in the hypothalamus of old sedentary rats compared to young (p<0.01). Life-long CR reduced the age-related increase in adrenomedullary TH by 50% (p<0.05), and completely reversed the changes in hypothalamic TH. Voluntary exercise, however, had no additional effect over CR. Since angiotensin II is involved in the regulation of catecholamine biosynthesis, we examined the expressions of angiotensin II receptor subtypes in the adrenal medulla. AT(1) protein levels were 2.8-fold higher in the old animals compared to young (p<0.01), and while AT(1) levels were unaffected by CR alone, CR+wheel running decreased AT(1) levels by 50% (p<0.01). AT(2) levels did not change with age, however CR+wheel running increased its level by 42% (p<0.05). These data indicate that a small decrease in daily food intake can avert age-related changes in catecholamine biosynthetic enzyme levels in the adrenal medulla and hypothalamus, possibly through affecting angiotensin II signaling.


Asunto(s)
Envejecimiento/metabolismo , Restricción Calórica , Catecolaminas/biosíntesis , Esfuerzo Físico/fisiología , Médula Suprarrenal/metabolismo , Envejecimiento/genética , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dopamina beta-Hidroxilasa/genética , Hipotálamo/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas F344 , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Factor de Transcripción AP-1/metabolismo , Tirosina 3-Monooxigenasa/genética
15.
Neuroreport ; 18(7): 649-52, 2007 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-17426592

RESUMEN

The effect of somatosensory pain on the total cerebral blood volume was investigated in anesthetized rats. Our results show for the first time that total cerebral blood volume remains unaltered in both brain hemispheres during 2.5 min noxious stimulation of the sensory C-fibres of the sciatic nerve. Regional cerebral blood flow was increased by 97% in the thalamus and by 47% in the hypothalamus at the same time. Blockade of the L-arginine-nitric oxide system reduced significantly the steady-state control level of total cerebral blood volume (i.l.: from 5.7+/-1.3 to 4.58+/-1.6 vol%, c.l.: from 5.0+/-0.6 to 4.24+/-0.9 vol%). Nitric oxide synthase blockade, however, did not affect either the stimulation induced increase of regional cerebral blood flow or the steadiness of total cerebral blood volume during the stimulation.


Asunto(s)
Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Dolor/fisiopatología , Animales , Encéfalo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Masculino , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/efectos de los fármacos , Óxido Nítrico Sintasa/metabolismo , Ratas , Ratas Wistar , Flujo Sanguíneo Regional/efectos de los fármacos , Flujo Sanguíneo Regional/fisiología , Nervio Ciático/fisiología
16.
Antioxid Redox Signal ; 8(7-8): 1131-40, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16910761

RESUMEN

Insulin resistance (IR) has adverse effects on the reactivity of arteries and arterioles and promotes arterial hypertension and vascular occlusive diseases. Altered reactivity of resistance vessels occurs at both the endothelium and smooth-muscle levels. One major mechanism of vascular dysfunction with IR involves the augmented generation, availability, and/or actions of reactive oxygen species (ROS). Scavengers of ROS are able immediately to restore normal dilator responsiveness in arteries from IR animals. Other factors, such as increased importance of constrictor agents such as endothelin, also restrict normal dilator responses. The basis of ROS-mediated vascular dysfunction in IR may be secondary to underlying inflammatory processes throughout the arterial wall. Although ROS scavengers may be beneficial in the short term, prolonged treatments involving behavioral approaches, such as changes in diet, weight loss, and regular exercise, and pharmacological approaches, involving the use of insulin-sensitizing agents, inhibitors of the renin-angiotensin system, or administration of statins, appear to offer benefits against the detrimental vascular effects of IR. Nonetheless, the most effective approach appears to involve prevention of IR via adoption of a healthy lifestyle by young people.


Asunto(s)
Resistencia a la Insulina , Especies Reactivas de Oxígeno/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Acetilcolina/farmacología , Animales , Arteria Basilar/efectos de los fármacos , Vasos Sanguíneos/fisiopatología , Endotelio Vascular/fisiopatología , Predicción , Depuradores de Radicales Libres/farmacología , Hipertensión/fisiopatología , Músculo Liso Vascular/fisiopatología , Canales de Potasio/fisiología , Ratas , Ratas Zucker , Superóxido Dismutasa/farmacología , Resistencia Vascular/fisiología , Vasodilatación/fisiología , Vasodilatadores/farmacología
17.
J Hypertens ; 24(1): 109-16, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16331108

RESUMEN

BACKGROUND: Centrally applied angiotensin II (Ang II) increases sympathetic nervous activity and mean arterial blood pressure (MAP), but the mediation of these effects is not fully understood. OBJECTIVE: To test the hypothesis that central effects of Ang II are mediated by reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H]-oxidase-dependent production of superoxide in the hypothalamus. METHODS: Under isoflurane anesthesia, male Sprague-Dawley rats were given an intracerebroventricular infusion of either artificial cerebrospinal fluid or apocynin (4 microg/kg per min), a selective inhibitor for NAD(P)H oxidase, for 30 min, followed by Ang II (20 ng) or carbachol (200 ng), while MAP and heart rate were measured at the femoral artery. At the end of the experiments, hydroethidine, a superoxide-sensitive fluorescent dye, was infused intravenously for 10 min, and superoxide production was assessed in the vasoregulatory hypothalamic nuclei using confocal microscopy. RESULTS: Ang II elicited a rapid 11 +/- 2-mmHg increase in MAP and a 16 +/- 2-beats/min decrease in heart rate. Apocynin abolished these effects of Ang II in a specific manner, as carbachol-induced increases in MAP were unaffected by the inhibition of NAD(P)H oxidase (MAP increased by 9 +/- 2 and 8 +/- 1 mmHg in the absence and presence of apocynin, respectively). In response to Ang II, apocynin-sensitive production of superoxide increased significantly in the nuclei of the anterior hypothalamus, in the subfornical organ, and in the paraventricular nucleus of the hypothalamus. CONCLUSION: These findings demonstrate that acute pressor responses of central Ang II are mediated by NAD(P)H-oxidase-dependent production of superoxide in the hypothalamus.


Asunto(s)
Angiotensina II/farmacología , Presión Sanguínea/efectos de los fármacos , Hipotálamo/metabolismo , NADPH Oxidasas/metabolismo , Superóxidos/metabolismo , Acetofenonas/farmacología , Angiotensina II/administración & dosificación , Animales , Núcleo Hipotalámico Anterior/efectos de los fármacos , Núcleo Hipotalámico Anterior/metabolismo , Presión Sanguínea/fisiología , Carbacol/farmacología , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Hipotálamo/efectos de los fármacos , Masculino , Microscopía Confocal , Microscopía Fluorescente , NADPH Oxidasas/antagonistas & inhibidores , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas Sprague-Dawley , Órgano Subfornical/efectos de los fármacos , Órgano Subfornical/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiología
18.
Auton Neurosci ; 197: 1-8, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26948539

RESUMEN

Brain-derived neurotrophic factor (BDNF) expression increases in the paraventricular nucleus of the hypothalamus (PVN) during hypertensive stimuli including stress and hyperosmolarity, but its role in PVN cardiovascular regulatory mechanisms is unclear. Chronic BDNF overexpression in the PVN has been shown to elevate sympathetic tone and blood pressure in part by modulating central angiotensin (Ang) II mechanisms. However, the cardiovascular effects of short-term increases in PVN levels of BDNF and the mechanisms governing them are unknown. Therefore, we investigated whether acute BDNF microinjections into the PVN of conscious and anesthetized Sprague-Dawley rats induce blood pressure elevations and whether Ang II signaling is involved in these hypertensive responses. In conscious rats, unilateral BDNF (12.5ng) microinjections into the PVN increased mean arterial pressure (MAP) by 27±1mmHg (P<0.001 vs vehicle), which was significantly attenuated by intracerebroventricular infusion of the Ang II-type-1 receptor (AT1R) antagonist losartan and by ganglionic blockade with intravenous hexamethonium infusion. In anesthetized rats, unilateral PVN microinjection of BDNF increased MAP by 31±4mmHg (P<0.001 vs vehicle), which was prevented by PVN microinjection pretreatments with the high-affinity BDNF receptor TrkB antagonist ANA-12, losartan, the angiotensin converting enzyme inhibitor lisinopril, or by intravenous hexamethonium. Additional experiments in hypothalamic samples including the PVN revealed that BDNF-induced TrkB receptor phosphorylation was prevented by ANA-12 and losartan pretreatments. Collectively, these data indicate that BDNF acting within the PVN acutely raises blood pressure under permissive control of Ang II-AT1R mechanisms and therefore may play an important role in mediating acute pressor responses to hypertensive stimuli.


Asunto(s)
Angiotensina II/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/fisiopatología , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Masculino , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptor de Angiotensina Tipo 1/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiopatología , Vasoconstrictores/farmacología
19.
J Exerc Nutrition Biochem ; 20(2): 58-64, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27508155

RESUMEN

PURPOSE: Both aging and the consumption of a high salt diet are associated with clear changes in the vascular system that can lead to the development of cardiovascular disease; however the mechanisms are not clearly understood. Therefore, we examined whether aging and the consumption of excess salt alters the function of potassium ATP-dependent channel signaling in mesenteric arteries. METHODS: Young (7 months) and old (29 months) Fischer 344 x Brown Norway rats were fed a control or a high salt diet (8% NaCl) for 12 days and mesenteric arteries were utilized for vascular reactivity measurements. RESULTS: Acetylcholine-induced endothelium relaxation was significantly reduced in old arteries (81 ± 4%) when compared with young arteries (92 ± 2%). Pretreatment with the potassium-ATP channel blocker glibenclamide reduced relaxation to acetylcholine in young arteries but did not alter dilation in old arteries. On a high salt diet, endothelium dilation to acetylcholine was significantly reduced in old salt arteries (60 ± 3%) when compared with old control arteries (81 ± 4%). Glibenclamide reduced acetylcholine-induced dilation in young salt arteries but had no effect on old salt arteries. Dilation to cromakalim, a potassium-ATP channel opener, was reduced in old salt arteries when compared with old control arteries. CONCLUSION: These findings demonstrate that aging impairs endothelium-dependent relaxation in mesenteric arteries. Furthermore, a high salt diet alters the function of potassium-ATP-dependent channel signaling in old isolated mesenteric arteries and affects the mediation of relaxation stimuli.

20.
J Exerc Nutrition Biochem ; 20(1): 41-8, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27298812

RESUMEN

PURPOSE: To determine whether resveratrol improves the adverse effects age on vascular function in mesenteric arteries (MAs), and diminishes the hyperactivity in adrenal gland with age. METHODS: Male F344 x Brown Norway rats were assigned to 6-month control (YC), 6-month resveratrol (YR), 24-month control (OC) and 24-month resveratrol (OR). Resveratrol (15 mg/kg) was provided to resveratrol groups in drinking water for 14 days. RESULTS: Concentration response curves to phenylephrine (PE, 10(-9)-10(-5)M), acetylcholine (Ach, 10(-9)-10(-5)M) and resveratrol (10(-8)-10(-4)M) were evaluated in pressurized isolated MAs. The Ach concentration-response curve was right shifted with maximal response diminished in OC compared with YC rats. These effects were reversed by resveratrol treatment. The resveratrol-mediated relaxant responses were unchanged with age or resveratrol suggesting an endothelium-independent mechanism. Resveratrol tended to increase endothelial nitric oxide synthase; caused no effect on copper-zinc superoxide dismutase; and normalized the age-related elevatation in DßH and NPY levels in adrenal medulla, two indicators of sympathetic activity. CONCLUSION: These data indicate that resveratrol reverses age-related dysfunction in endothelium-dependent vasodilation in MAs and partially reverses hyperactivity of adrenomedullary function with age. This treatment may have a therapeuticpotential in the treatment of cardiovascular diseases or hypertension in the elderly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA