Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 99(4): 1701-1763, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31339053

RESUMEN

Obesity is increasingly prevalent and is associated with substantial cardiovascular risk. Adipose tissue distribution and morphology play a key role in determining the degree of adverse effects, and a key factor in the disease process appears to be the inflammatory cell population in adipose tissue. Healthy adipose tissue secretes a number of vasoactive adipokines and anti-inflammatory cytokines, and changes to this secretory profile will contribute to pathogenesis in obesity. In this review, we discuss the links between adipokine dysregulation and the development of hypertension and diabetes and explore the potential for manipulating adipose tissue morphology and its immune cell population to improve cardiovascular health in obesity.


Asunto(s)
Tejido Adiposo/fisiopatología , Presión Sanguínea , Diabetes Mellitus/fisiopatología , Hipertensión/fisiopatología , Obesidad/fisiopatología , Adipoquinas/metabolismo , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Adiposidad , Animales , Diabetes Mellitus/epidemiología , Diabetes Mellitus/inmunología , Diabetes Mellitus/metabolismo , Humanos , Hipertensión/epidemiología , Hipertensión/inmunología , Hipertensión/metabolismo , Mediadores de Inflamación/metabolismo , Obesidad/epidemiología , Obesidad/inmunología , Obesidad/metabolismo , Fenotipo , Medición de Riesgo , Factores de Riesgo , Transducción de Señal , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiopatología
2.
Crit Care ; 28(1): 65, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424569

RESUMEN

SARS-CoV-2 can induce insulin resistance, which is, among others, mediated by adipose tissue dysfunction and reduced angiotensin-converting enzyme 2 (ACE2) enzymatic activity. In SARS-CoV-2-infected mice, the tyrosine kinase inhibitor imatinib attenuates inflammation and improves insulin sensitivity. Here, we report the effects of imatinib on incident hyperglycaemia, circulating levels of glucoregulatory proteins, longitudinal insulin sensitivity and ACE-2 enzymatic activity in 385 hospitalized COVID-19 patients who participated in a randomized, double-blind, placebo-controlled clinical trial. Patients with severe hyperglycaemia had similar demographics compared to those without, but required longer hospital stays and exhibited higher invasive ventilation and mortality rates. The incidence of severe hyperglycaemia was significantly lower in patients treated with imatinib, while insulin production and central insulin sensitivity were unaffected. Imatinib increased plasma angiotensin-2 and adiponectin levels, and decreased c-Jun N-terminal protein kinase 1 (JNK1), JNK2 and interleukin-6 levels. These findings suggest that imatinib restores endocrine control of peripheral glucose uptake in COVID-19.


Asunto(s)
COVID-19 , Hiperglucemia , Resistencia a la Insulina , Humanos , Hiperglucemia/tratamiento farmacológico , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , SARS-CoV-2
3.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901761

RESUMEN

Type 2 diabetes mellitus (T2D) is a prevalent disease often accompanied by the occurrence of dyslipidemia. Four and a half LIM domains 2 (FHL2) is a scaffolding protein, whose involvement in metabolic disease has recently been demonstrated. The association of human FHL2 with T2D and dyslipidemia in a multiethnic setting is unknown. Therefore, we used the large multiethnic Amsterdam-based Healthy Life in an Urban Setting (HELIUS) cohort to investigate FHL2 genetic loci and their potential role in T2D and dyslipidemia. Baseline data of 10,056 participants from the HELIUS study were available for analysis. The HELIUS study contained individuals of European Dutch, South Asian Surinamese, African Surinamese, Ghanaian, Turkish, and Moroccan descent living in Amsterdam and were randomly sampled from the municipality register. Nineteen FHL2 polymorphisms were genotyped, and associations with lipid panels and T2D status were investigated. We observed that seven FHL2 polymorphisms associated nominally with a pro-diabetogenic lipid profile including triglyceride (TG), high-density and low-density lipoprotein-cholesterol (HDL-C and LDL-C), and total cholesterol (TC) concentrations, but not with blood glucose concentrations or T2D status in the complete HELIUS cohort upon correcting for age, gender, BMI, and ancestry. Upon stratifying for ethnicity, we observed that only two of the nominally significant associations passed multiple testing adjustments, namely, the association of rs4640402 with increased TG and rs880427 with decreased HDL-C concentrations in the Ghanaian population. Our results highlight the effect of ethnicity on pro-diabetogenic selected lipid biomarkers within the HELIUS cohort, as well as the need for more large multiethnic cohort studies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dislipidemias , Humanos , Ghana , Triglicéridos , HDL-Colesterol , Proteínas Musculares , Factores de Transcripción , Proteínas con Homeodominio LIM
4.
Diabetologia ; 65(10): 1721-1733, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35802167

RESUMEN

AIMS/HYPOTHESIS: The general population is ageing, involving an enhanced incidence of chronic diseases such as type 2 diabetes. With ageing, DNA methylation of FHL2 increases, as well as expression of the four and a half LIM domains 2 (FHL2) protein in human pancreatic islets. We hypothesised that FHL2 is actively involved in glucose metabolism. METHODS: Publicly available microarray datasets from human pancreatic islets were analysed for FHL2 expression. In FHL2-deficient mice, we studied glucose clearance and insulin secretion. Gene expression analysis and glucose-stimulated insulin secretion (GSIS) were determined in isolated murine FHL2-deficient islets to evaluate insulin-secretory capacity. Moreover, knockdown and overexpression of FHL2 were accomplished in MIN6 cells to delineate the underlying mechanism of FHL2 function. RESULTS: Transcriptomics of human pancreatic islets revealed that individuals with elevated levels of HbA1c displayed increased FHL2 expression, which correlated negatively with insulin secretion pathways. In line with this observation, FHL2-deficient mice cleared glucose more efficiently than wild-type littermates through increased plasma insulin levels. Insulin sensitivity was comparable between these genotypes. Interestingly, pancreatic islets isolated from FHL2-deficient mice secreted more insulin in GSIS assays than wild-type mouse islets even though insulin content and islet size was similar. To support this observation, we demonstrated increased expression of the transcription factor crucial in insulin secretion, MAF BZIP transcription factor A (MafA), higher expression of GLUT2 and reduced expression of the adverse factor c-Jun in FHL2-deficient islets. The underlying mechanism of FHL2 was further delineated in MIN6 cells. FHL2-knockdown led to enhanced activation of forkhead box protein O1 (FOXO1) and its downstream genes such as Mafa and Pdx1 (encoding pancreatic and duodenal homeobox 1), as well as increased glucose uptake. On the other hand, FHL2 overexpression in MIN6 cells blocked GSIS, increased the formation of reactive oxygen species and increased c-Jun activity. CONCLUSIONS/INTERPRETATION: Our data demonstrate that FHL2 deficiency improves insulin secretion from beta cells and improves glucose tolerance in mice. Given that FHL2 expression in humans increases with age and that high expression levels of FHL2 are associated with beta cell dysfunction, we propose that enhanced FHL2 expression in elderly individuals contributes to glucose intolerance and the development of type 2 diabetes. DATA AVAILABILITY: The human islet microarray datasets used are publicly available and can be found on https://www.ncbi.nlm.nih.gov/geo/ .


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Anciano , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Proteínas con Homeodominio LIM/genética , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo
5.
Kidney Int ; 99(5): 1088-1101, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33359500

RESUMEN

Chronic kidney disease (CKD) promotes development of cardiac abnormalities and is highly prevalent in patients with heart failure, particularly in those with preserved ejection fraction. CKD is associated with endothelial dysfunction, however, whether CKD can induce impairment of endothelium-to-cardiomyocyte crosstalk leading to impairment of cardiomyocyte function is not known. The sodium-glucose co-transporter 2 inhibitor, empagliflozin, reduced cardiovascular events in diabetic patients with or without CKD, suggesting its potential as a new treatment for heart failure with preserved ejection fraction. We hypothesized that uremic serum from patients with CKD would impair endothelial control of cardiomyocyte relaxation and contraction, and that empagliflozin would protect against this effect. Using a co-culture system of human cardiac microvascular endothelial cells with adult rat ventricular cardiomyocytes to measure cardiomyocyte relaxation and contraction, we showed that serum from patients with CKD impaired endothelial enhancement of cardiomyocyte function which was rescued by empagliflozin. Exposure to uremic serum reduced human cardiac microvascular endothelial cell nitric oxide bioavailability, and increased mitochondrial reactive oxygen species and 3-nitrotyrosine levels, indicating nitric oxide scavenging by reactive oxygen species. Empagliflozin attenuated uremic serum-induced generation of endothelial mitochondrial reactive oxygen species, leading to restoration of nitric oxide production and endothelium-mediated enhancement of nitric oxide levels in cardiomyocytes, an effect largely independent of sodium-hydrogen exchanger-1. Thus, empagliflozin restores the beneficial effect of cardiac microvascular endothelial cells on cardiomyocyte function by reducing mitochondrial oxidative damage, leading to reduced reactive oxygen species accumulation and increased endothelial nitric oxide bioavailability.


Asunto(s)
Miocitos Cardíacos , Insuficiencia Renal Crónica , Animales , Compuestos de Bencidrilo , Células Endoteliales , Endotelio , Endotelio Vascular , Glucósidos , Humanos , Óxido Nítrico , Ratas , Insuficiencia Renal Crónica/tratamiento farmacológico
6.
Angiogenesis ; 24(3): 677-693, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33770321

RESUMEN

Endothelial barrier disruption and vascular leak importantly contribute to organ dysfunction and mortality during inflammatory conditions like sepsis and acute respiratory distress syndrome. We identified the kinase Arg/Abl2 as a mediator of endothelial barrier disruption, but the role of Arg in endothelial monolayer regulation and its relevance in vivo remain poorly understood. Here we show that depletion of Arg in endothelial cells results in the activation of both RhoA and Rac1, increased cell spreading and elongation, redistribution of integrin-dependent cell-matrix adhesions to the cell periphery, and improved adhesion to the extracellular matrix. We further show that Arg is activated in the endothelium during inflammation, both in murine lungs exposed to barrier-disruptive agents, and in pulmonary microvessels of septic patients. Importantly, Arg-depleted endothelial cells were less sensitive to barrier-disruptive agents. Despite the formation of F-actin stress fibers and myosin light chain phosphorylation, Arg depletion diminished adherens junction disruption and intercellular gap formation, by reducing the disassembly of cell-matrix adhesions and cell retraction. In vivo, genetic deletion of Arg diminished vascular leak in the skin and lungs, in the presence of a normal immune response. Together, our data indicate that Arg is a central and non-redundant regulator of endothelial barrier integrity, which contributes to cell retraction and gap formation by increasing the dynamics of adherens junctions and cell-matrix adhesions in a Rho GTPase-dependent fashion. Therapeutic inhibition of Arg may provide a suitable strategy for the treatment of a variety of clinical conditions characterized by vascular leak.


Asunto(s)
Matriz Extracelular/metabolismo , Uniones Comunicantes/enzimología , Células Endoteliales de la Vena Umbilical Humana/enzimología , Proteínas Tirosina Quinasas/metabolismo , Alveolos Pulmonares/enzimología , Animales , Adhesión Celular/genética , Activación Enzimática , Matriz Extracelular/genética , Uniones Comunicantes/genética , Humanos , Inflamación/enzimología , Inflamación/genética , Ratones , Ratones Noqueados , Proteínas Tirosina Quinasas/genética
7.
Arterioscler Thromb Vasc Biol ; 40(7): 1695-1704, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32404008

RESUMEN

OBJECTIVE: In mice fed a high-fat diet, impairment of insulin signaling in endothelium is an early phenomenon that precedes decreased insulin sensitivity of skeletal muscle, adipose tissue, and liver. We assessed in humans whether short-term overfeeding affects insulin-induced microvascular recruitment in skeletal muscle and adipose tissue before changes occur in glucose uptake and lipolysis. Approach and Results: Fifteen healthy males underwent a hypercaloric and subsequent hypocaloric diet intervention. Before, during, and after the hypercaloric diet, and upon return to baseline weight, all participants underwent (1) a hyperinsulinemic-euglycemic clamp to determine insulin-induced glucose uptake and suppression of lipolysis (2) contrast-enhanced ultrasonography to measure insulin-induced microvascular recruitment in skeletal muscle and adipose tissue. In addition, we assessed insulin-induced vasodilation of isolated skeletal muscle resistance arteries by pressure myography after the hypercaloric diet in study participants and controls (n=5). The hypercaloric diet increased body weight (3.5 kg; P<0.001) and fat percentage (3.5%; P<0.001) but did not affect glucose uptake nor lipolysis. The hypercaloric diet increased adipose tissue microvascular recruitment (P=0.041) and decreased the ratio between skeletal muscle and adipose tissue microvascular blood volume during hyperinsulinemia (P=0.019). Insulin-induced vasodilation of isolated skeletal muscle arterioles was significantly lower in participants compared with controls (P<0.001). The hypocaloric diet reversed all of these changes, except the increase in adipose tissue microvascular recruitment. CONCLUSIONS: In lean men, short-term overfeeding reduces insulin-induced vasodilation of skeletal muscle resistance arteries and shifts the distribution of tissue perfusion during hyperinsulinemia from skeletal muscle to adipose tissue without affecting glucose uptake and lipolysis. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02628301.


Asunto(s)
Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/metabolismo , Arteriolas/efectos de los fármacos , Glucemia/efectos de los fármacos , Restricción Calórica , Ingestión de Energía , Insulina/administración & dosificación , Lipólisis/efectos de los fármacos , Microcirculación/efectos de los fármacos , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Adiposidad , Adolescente , Adulto , Arteriolas/fisiología , Glucemia/metabolismo , Estudios de Casos y Controles , Voluntarios Sanos , Humanos , Resistencia a la Insulina , Masculino , Factores de Tiempo , Vasodilatación/efectos de los fármacos , Aumento de Peso , Pérdida de Peso , Adulto Joven
8.
Eur J Vasc Endovasc Surg ; 61(6): 1008-1016, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33858751

RESUMEN

OBJECTIVE: Perivascular adipose tissue (PVAT) contributes to vascular homeostasis and is increasingly linked to vascular pathology. PVAT density and volume were associated with abdominal aortic aneurysm (AAA) presence and dimensions on imaging. However, mechanisms underlying the role of PVAT in AAA have not been clarified. This study aimed to explore differences in PVAT from AAA using gene expression and functional tests. METHODS: Human aortic PVAT and control subcutaneous adipose tissue were collected during open AAA surgery. Gene analyses and functional tests were performed. The control group consisted of healthy aorta from non-living renal transplant donors. Gene expression tests were performed to study genes potentially involved in various inflammatory processes and AAA related genes. Live PVAT and subcutaneous adipose tissue (SAT) from AAA were used for ex vivo co-culture with smooth muscle cells (SMCs) retrieved from non-pathological aortas. RESULTS: Adipose tissue was harvested from 27 AAA patients (n [gene expression] = 22, n [functional tests] = 5) and five control patients. An increased inflammatory gene expression of PTPRC (p = .008), CXCL8 (p = .033), LCK (p = .003), CCL5 (p = .004) and an increase in extracellular matrix breakdown marker MMP9 (p = .016) were found in AAA compared with controls. Also, there was a decreased anti-inflammatory gene expression of PPARG in AAA compared with controls (p = .040). SMC co-cultures from non-pathological aortas with PVAT from AAA showed increased MMP9 (p = .033) and SMTN (p = .008) expression and SAT increased SMTN expression in these SMC. CONCLUSION: The data revealed that PVAT from AAA shows an increased pro-inflammatory and matrix metallopeptidase gene expression and decreased anti-inflammatory gene expression. Furthermore, increased expression of genes involved in aneurysm formation was found in healthy SMC co-culture with PVAT of AAA patients. Therefore, PVAT from AAA might contribute to inflammation of the adjacent aortic wall and thereby plays a possible role in AAA pathophysiology. These proposed pathways of inflammatory induction could reveal new therapeutic targets in AAA treatment.


Asunto(s)
Aneurisma de la Aorta Abdominal/genética , Quimiocina CCL5/genética , Interleucina-8/genética , Antígenos Comunes de Leucocito/genética , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Metaloproteinasa 9 de la Matriz/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Anciano , Anciano de 80 o más Años , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Estudios de Casos y Controles , Quimiocina CCL5/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Femenino , Humanos , Interleucina-8/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Persona de Mediana Edad , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Mensajero/metabolismo
9.
Microcirculation ; 27(1): e12588, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31465606

RESUMEN

Contrast-enhanced ultrasound is an imaging technique that can be used to quantify microvascular blood volume and blood flow of vital organs in humans. It relies on the use of microbubble contrast agents and ultrasound-based imaging of microbubbles. Over the past decades, both ultrasound contrast agents and experimental techniques to image them have rapidly improved, as did experience among investigators and clinicians. However, these improvements have not yet resulted in uniform guidelines for CEUS when it comes to quantification of tissue perfusion in humans, preventing its uniform and widespread use in research settings. The objective of this review is to provide a methodological overview of CEUS and its development, the influences of hardware and software settings, type and dosage of ultrasound contrast agent, and method of analysis on CEUS-derived perfusion data. Furthermore, we will discuss organ-specific imaging challenges, advantages, and limitations of CEUS.


Asunto(s)
Medios de Contraste/uso terapéutico , Microburbujas/uso terapéutico , Ultrasonografía , Humanos , Perfusión
10.
Am J Physiol Heart Circ Physiol ; 317(2): H364-H374, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31149833

RESUMEN

Reduced vasodilator properties of insulin in obesity are caused by changes in perivascular adipose tissue and contribute to microvascular dysfunction in skeletal muscle. The causes of this dysfunction are unknown. The effects of a short-term Western diet on JNK2-expressing cells in perivascular adipose tissue (PVAT) on insulin-induced vasodilation and perfusion of skeletal muscle were assessed. In vivo, 2 wk of Western diet (WD) reduced whole body insulin sensitivity and insulin-stimulated muscle perfusion, determined using contrast ultrasonography during the hyperinsulinemic clamp. Ex vivo, WD triggered accumulation of PVAT in skeletal muscle and blunted its ability to facilitate insulin-induced vasodilation. Labeling of myeloid cells with green fluorescent protein identified bone marrow as a source of PVAT in muscle. To study whether JNK2-expressing inflammatory cells from bone marrow were involved, we transplanted JNK2-/- bone marrow to WT mice. Deletion of JNK2 in bone marrow rescued the vasodilator phenotype of PVAT during WD exposure. JNK2 deletion in myeloid cells prevented the WD-induced increase in F4/80 expression. Even though WD and JNK2 deletion resulted in specific changes in gene expression of PVAT; epididymal and subcutaneous adipose tissue; expression of tumor necrosis factor-α, interleukin-1ß, interleukin-6, or protein inhibitor of STAT1 was not affected. In conclusion, short-term Western diet triggers infiltration of JNK2-positive myeloid cells into PVAT, resulting in PVAT dysfunction, nonclassical inflammation, and loss of insulin-induced vasodilatation in vivo and ex vivo.NEW & NOTEWORTHY We demonstrate that in the earliest phase of weight gain, changes in perivascular adipose tissue in muscle impair insulin-stimulated muscle perfusion. The hallmark of these changes is infiltration by inflammatory cells. Deletion of JNK2 from the bone marrow restores the function of perivascular adipose tissue to enhance insulin's vasodilator effects in muscle, showing that the bone marrow contributes to regulation of muscle perfusion.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Resistencia a la Insulina , Insulina/farmacología , Microvasos/efectos de los fármacos , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Músculo Esquelético/irrigación sanguínea , Células Mieloides/enzimología , Obesidad/enzimología , Vasodilatación/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/fisiopatología , Animales , Trasplante de Médula Ósea , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/fisiopatología , Proteína Quinasa 9 Activada por Mitógenos/deficiencia , Proteína Quinasa 9 Activada por Mitógenos/genética , Obesidad/etiología , Obesidad/fisiopatología , Flujo Sanguíneo Regional , Factores de Tiempo , Aumento de Peso
11.
Microcirculation ; 26(3): e12530, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30659710

RESUMEN

OBJECTIVE: Cognitive impairments in type 1 diabetes may result from hyperglycemia-associated cerebral microangiopathy. We aimed to identify cerebral microangiopathy and skin microvascular dysfunction-as a surrogate marker for generalized microvascular function-as predictors of cognitive performance over time. METHODS: In this prospective cohort study, 25 type 1 diabetes patients with proliferative retinopathy and 25 matched healthy controls underwent neurocognitive testing at baseline and after follow-up (3.8 ± 0.8 years). At baseline, 1.5-T cerebral magnetic resonance imaging was used to detect WML and cerebral microbleeds. Skin capillary perfusion was assessed by means of capillary microscopy. RESULTS: In type 1 diabetes patients, but not in healthy controls, the presence of WML (ß = -0.419; P = 0.037) as well as lower skin capillary perfusion (baseline: ß = 0.753; P < 0.001; peak hyperemia: ß = 0.743; P = 0.001; venous occlusion: ß = 0.675; P = 0.003; capillary recruitment: ß = 0.549; P = 0.022) at baseline was associated with lower cognitive performance over time, independent of age, sex, HbA1c, and severe hypoglycemia. The relationship between WML and lower cognitive performance was significantly reduced after adjusting for capillary perfusion. CONCLUSIONS: These data fit the hypothesis that cerebral microangiopathy is a manifestation of generalized microvascular dysfunction, leading to lower cognitive performance.


Asunto(s)
Capilares , Corteza Cerebelosa , Trastornos Cerebrovasculares , Cognición , Diabetes Mellitus Tipo 1 , Imagen por Resonancia Magnética , Microcirculación , Piel , Sustancia Blanca , Adulto , Capilares/diagnóstico por imagen , Capilares/fisiopatología , Corteza Cerebelosa/irrigación sanguínea , Corteza Cerebelosa/diagnóstico por imagen , Corteza Cerebelosa/fisiopatología , Trastornos Cerebrovasculares/diagnóstico por imagen , Trastornos Cerebrovasculares/fisiopatología , Diabetes Mellitus Tipo 1/diagnóstico por imagen , Diabetes Mellitus Tipo 1/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Piel/irrigación sanguínea , Piel/diagnóstico por imagen , Sustancia Blanca/irrigación sanguínea , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiopatología
12.
Am J Physiol Heart Circ Physiol ; 314(3): H381-H391, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29101165

RESUMEN

Myocardial contrast echocardiography (MCE) offers the opportunity to study myocardial perfusion defects in mice in detail. The value of MCE compared with single-photon emission computed tomography, positron emission tomography, and computed tomography consists of high spatial resolution, the possibility of quantification of blood volume, and relatively low costs. Nevertheless, a number of technical and physiological aspects should be considered to ensure reproducibility among research groups. The aim of this overview is to describe technical aspects of MCE and the physiological parameters that influence myocardial perfusion data obtained with this technique. First, technical aspects of MCE discussed in this technical review are logarithmic compression of ultrasound data by ultrasound systems, saturation of the contrast signal, and acquisition of images during different phases of the cardiac cycle. Second, physiological aspects of myocardial perfusion that are affected by the experimental design are discussed, including the anesthesia regimen, systemic cardiovascular effects of vasoactive agents used, and fluctuations in body temperature that alter myocardial perfusion. When these technical and physiological aspects of MCE are taken into account and adequately standardized, MCE is an easily accessible technique for mice that can be used to study the control of myocardial perfusion by a wide range of factors.


Asunto(s)
Medios de Contraste/administración & dosificación , Ecocardiografía , Cardiopatías/diagnóstico por imagen , Corazón/diagnóstico por imagen , Imagen de Perfusión Miocárdica/métodos , Animales , Circulación Coronaria , Modelos Animales de Enfermedad , Corazón/fisiopatología , Cardiopatías/fisiopatología , Ratones , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
13.
Am J Physiol Heart Circ Physiol ; 315(5): H1414-H1424, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30028196

RESUMEN

Cardiovascular diseases account for ~50% of mortality in patients with chronic kidney disease (CKD). Fibroblast growth factor 23 (FGF23) is independently associated with endothelial dysfunction and cardiovascular mortality. We hypothesized that CKD impairs microvascular endothelial function and that this can be attributed to FGF23. Mice were subjected to partial nephrectomy (5/6Nx) or sham surgery. To evaluate the functional role of FGF23, non-CKD mice received FGF23 injections and CKD mice received FGF23-blocking antibodies after 5/6Nx surgery. To examine microvascular function, myocardial perfusion in vivo and vascular function of gracilis resistance arteries ex vivo were assessed in mice. 5/6Nx surgery blunted ex vivo vasodilator responses to acetylcholine, whereas responses to sodium nitroprusside or endothelin were normal. In vivo FGF23 injections in non-CKD mice mimicked this endothelial defect, and FGF23 antibodies in 5/6Nx mice prevented endothelial dysfunction. Stimulation of microvascular endothelial cells with FGF23 in vitro did not induce ERK phosphorylation. Increased plasma asymmetric dimethylarginine concentrations were increased by FGF23 and strongly correlated with endothelial dysfunction. Increased FGF23 concentration did not mimic impaired endothelial function in the myocardium of 5/6Nx mice. In conclusion, impaired peripheral endothelium-dependent vasodilatation in 5/6Nx mice is mediated by FGF23 and can be prevented by blocking FGF23. These data corroborate FGF23 as an important target to combat cardiovascular disease in CKD. NEW & NOTEWORTHY In the present study, we provide the first evidence that fibroblast growth factor 23 (FGF23) is a cause of peripheral endothelial dysfunction in a model of early chronic kidney disease (CKD) and that endothelial dysfunction in CKD can be prevented by blockade of FGF23. This pathological effect on endothelial cells was induced by long-term exposure of physiological levels of FGF23. Mechanistically, increased plasma asymmetric dimethylarginine concentrations were strongly associated with this endothelial dysfunction in CKD and were increased by FGF23.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Músculo Grácil/irrigación sanguínea , Riñón/fisiopatología , Microcirculación , Microvasos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Resistencia Vascular , Vasodilatación , Animales , Arginina/análogos & derivados , Arginina/sangre , Células Cultivadas , Circulación Coronaria , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiopatología , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/farmacología , Humanos , Masculino , Ratones Endogámicos C57BL , Microcirculación/efectos de los fármacos , Microvasos/efectos de los fármacos , Microvasos/fisiopatología , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/fisiopatología , Transducción de Señal/efectos de los fármacos , Resistencia Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
14.
Microcirculation ; 25(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29210137

RESUMEN

OBJECTIVE: To determine the human dose-response relationship between a stepwise increase in arterial oxygen tension and its associated changes in DO2 and sublingual microcirculatory perfusion. METHODS: Fifteen healthy volunteers breathed increasing oxygen fractions for 10 minutes to reach arterial oxygen tensions of baseline (breathing air), 20, 40, 60 kPa, and max kPa (breathing oxygen). Systemic hemodynamics were measured continuously by the volume-clamp method. At the end of each period, the sublingual microcirculation was assessed by SDF. RESULTS: Systemic DO2 was unchanged throughout the study (Pslope  = .8). PVD decreased in a sigmoidal fashion (max -15% while breathing oxygen, SD18, Pslope  = .001). CI decreased linearly (max -10%, SD10, Pslope  < .001) due to a reduction in HR (max -10%, SD7, Pslope  = .009). There were no changes in stroke volume or MAP. Most changes became apparent above an arterial oxygen tension of 20 kPa. CONCLUSIONS: In healthy volunteers, supraphysiological arterial oxygen tensions have no effect on systemic DO2 . Sublingual microcirculatory PVD decreased in a dose-dependent fashion. All hemodynamic changes appear negligible up to an arterial oxygen tension of 20 kPa.


Asunto(s)
Hiperoxia/metabolismo , Microcirculación , Suelo de la Boca/irrigación sanguínea , Oxígeno/metabolismo , Adulto , Arterias , Presión Sanguínea , Voluntarios Sanos , Hemodinámica , Humanos , Hiperoxia/fisiopatología
15.
Diabetes Obes Metab ; 20(1): 206-210, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28643477

RESUMEN

Preclinical studies have suggested that polyphenols extracted from red wine (RWPs) favourably affect insulin sensitivity, but there is controversy over whether RWPs exert similar effects in humans. The aim of the present study was to determine whether RWPs improve insulin sensitivity in obese volunteers. Obese (body mass index >30 kg/m2 ) volunteers were randomly allocated to RWPs 600 mg/d (n = 14) or matched placebo (n = 15) in a double-blind parallel-arm study for 8 weeks. The participants were investigated at baseline and at the end of the study. Insulin sensitivity was determined using a hyperinsulinaemic-euglycaemic clamp (M-value), a mixed-meal test (Matsuda index), and homeostatic model assessment of insulin resistance (HOMA-IR). RWPs elicited no significant changes in M-value (RWP group: median [interquartile range; IQR] baseline 3.0 [2.4; 3.6]; end of study 3.3 [2.4; 4.8] vs placebo group: median [IQR] baseline 3.4 [2.8; 4.4]; end of study 2.9 [2.8; 5.9] mg/kg/min; P = .65), in Matsuda index (RWP group: median [IQR] baseline 3.3 [2.2; 4.8]; end of study 3.6 [2.4; 4.8] vs placebo group: median [IQR] baseline 4.0 [3.0; 6.0]; end of study 4.0 [3.0; 5.2]; P = .88), or in HOMA-IR. This study showed that 8 weeks of RWP supplementation did not improve insulin sensitivity in 29 obese volunteers. Our findings were not consistent with the hypothesis that RWPs ameliorate insulin resistance in human obesity.


Asunto(s)
Diabetes Mellitus Tipo 2/prevención & control , Suplementos Dietéticos , Hipoglucemiantes/uso terapéutico , Resistencia a la Insulina , Obesidad/dietoterapia , Polifenoles/uso terapéutico , Vino/análisis , Adulto , Fármacos Antiobesidad/uso terapéutico , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/etiología , Método Doble Ciego , Femenino , Frutas/química , Frutas/metabolismo , Técnica de Clampeo de la Glucosa , Humanos , Masculino , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/fisiopatología , Pigmentos Biológicos/biosíntesis , Extractos Vegetales/uso terapéutico , Periodo Posprandial , Vitis/química , Vitis/metabolismo , Adulto Joven
16.
Diabetes Obes Metab ; 20(11): 2523-2531, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29885045

RESUMEN

AIMS: In type 2 diabetes impaired insulin-induced muscle perfusion is thought to contribute to reduced whole-body glucose uptake. In this study, we examined the effects of iloprost, a stable prostacyclin analogue, on insulin-induced muscle capillary recruitment and whole-body glucose uptake. MATERIALS AND METHODS: In a randomized cross-over design, 12 type 2 diabetes patients (age, 55 [46-69] years; BMI, 33.1 [31.0-39] kg/m2 ) underwent two hyperinsulinaemic-euglycaemic clamps, one with and one without simultaneous low-dose iloprost infusion. Contrast-enhanced ultrasonography of the vastus lateralis muscle was performed before and during the clamp. Muscle capillary recruitment was calculated as percentage change in microvascular blood volume (MBV) before and during the clamp. RESULTS: Insulin infusion reduced skeletal muscle MBV by ~50% compared to the fasting state (fasting, 1.77·10-4 [1.54·10-5 -2.44·10-3 ] arbitrary units (AU); hyperinsulinaemia, 6.69·10-5 [2.68·10-6 -5.72·10-4 ] AU; P = 0.050). Infusion of iloprost prevented this insulin-induced skeletal muscle capillary derecruitment, from (-49.5 [-89.5 to 55.3] %) to (8.0 [-68.8 to 306.6] %), for conditions without and with iloprost, respectively. The rate of glucose disappearance (Rd ) did not change significantly during iloprost infusion (17.3 [10.0-40.8] µmol/kg/min) compared with insulin infusion alone (17.6 [9.9-68.7] µmol/kg/min). CONCLUSIONS: Our data suggest that acute improvement in insulin-stimulated muscle perfusion is not an attractive therapeutic approach to bypass cellular resistance to glucose uptake in type 2 diabetes. Whether long-term improvements in insulin-induced muscle perfusion may prove beneficial for glucose disposal remains to be determined.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Angiopatías Diabéticas/prevención & control , Iloprost/administración & dosificación , Insulina/farmacología , Microcirculación/efectos de los fármacos , Músculo Esquelético , Anciano , Glucemia/efectos de los fármacos , Volumen Sanguíneo/efectos de los fármacos , Estudios Cruzados , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/fisiopatología , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Infusiones Intravenosas , Masculino , Persona de Mediana Edad , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos
17.
Arterioscler Thromb Vasc Biol ; 37(3): 411-418, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28126826

RESUMEN

After food ingestion, macronutrients are transported to and stored in the skeletal muscle and adipose tissue. They can be subsequently used as an energy source in times of energy deprivation. Uptake of these nutrients in myocytes and adipocytes depends largely on adequate tissue perfusion. Interestingly, insulin is able to dilate skeletal muscle arterioles, which facilitates the delivery of macronutrients and insulin itself to muscle tissue. Insulin-stimulated skeletal muscle perfusion is impaired in several insulin-resistant states and is believed to contribute to impaired skeletal muscle glucose uptake and consequently impaired whole-body glucose disposal. Insulin-resistant individuals also exhibit blunted postprandial adipose tissue perfusion. However, the relevance of this impairment to metabolic dysregulation is less clear. In this review, we provide an overview of adipose tissue perfusion in healthy and insulin-resistant individuals, its regulation among others by insulin, and the possible influences of impaired adipose tissue perfusion on whole-body insulin sensitivity. Finally, we propose a novel hypothesis that acute overfeeding impacts distribution of macronutrients by reducing skeletal muscle perfusion, while adipose tissue perfusion remains intact. VISUAL OVERVIEW: An online visual overview is available for this article.


Asunto(s)
Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/metabolismo , Resistencia a la Insulina , Insulina/sangre , Microcirculación , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Animales , Glucemia/metabolismo , Metabolismo Energético , Obesidad/sangre , Obesidad/fisiopatología , Periodo Posprandial , Flujo Sanguíneo Regional , Transducción de Señal
18.
Crit Care ; 22(1): 189, 2018 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-30075723

RESUMEN

BACKGROUND: Arterial hyperoxia may induce vasoconstriction and reduce cardiac output, which is particularly undesirable in patients who already have compromised perfusion of vital organs. Due to the inaccessibility of vital organs in humans, vasoconstrictive effects of hyperoxia have primarily been studied in animal models. However, the results of these studies vary substantially. Here, we investigate the variation in magnitude of the hyperoxia effect among studies and explore possible sources of heterogeneity, such as vascular region and animal species. METHOD: Pubmed and Embase were searched for eligible studies up to November 2017. In vivo and ex vivo animal studies reporting on vascular tone changes induced by local or systemic normobaric hyperoxia were included. Experiments with co-interventions (e.g. disease or endothelium removal) or studies focusing on lung, brain or fetal vasculature or the ductus arteriosus were not included. We extracted data pertaining to species, vascular region, blood vessel characteristics and method of hyperoxia induction. Overall effect sizes were estimated with a standardized mean difference (SMD) random effects model. RESULTS: We identified a total of 60 studies, which reported data on 67 in vivo and 18 ex vivo experiments. In the in vivo studies, hyperoxia caused vasoconstriction with an SMD of - 1.42 (95% CI - 1.65 to - 1.19). Ex vivo, the overall effect size was SMD - 0.56 (95% CI - 1.09 to - 0.03). Between-study heterogeneity (I2) was high for in vivo (72%, 95% CI 62 to 85%) and ex vivo studies (86%, 95% CI 78 to 98%). In vivo, in comparison to the overall effect size, hyperoxic vasoconstriction was less pronounced in the intestines and skin (P = 0.03) but enhanced in the cremaster muscle region (P < 0.001). Increased constriction was seen in vessels 15-25 µm in diameter. Hyperoxic constriction appeared to be directly proportional to oxygen concentration. For ex vivo studies, heterogeneity could not be explained with subgroup analysis. CONCLUSION: The effect of hyperoxia on vascular tone is substantially higher in vivo than ex vivo. The magnitude of the constriction is most pronounced in vessels ~ 15-25 µm in diameter and is proportional to the level of hyperoxia. Relatively increased constriction was seen in muscle vasculature, while reduced constriction was seen in the skin and intestines.


Asunto(s)
Arterias/efectos de los fármacos , Hiperoxia/complicaciones , Vasoconstricción/efectos de los fármacos , Animales , Arterias/fisiopatología , Gasto Cardíaco/fisiología , Gatos , Cricetinae , Modelos Animales de Enfermedad , Hiperoxia/fisiopatología , Conejos , Ratas , Vasoconstricción/fisiología
20.
Microcirculation ; 23(1): 62-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26616260

RESUMEN

OBJECTIVE: In addition to insulin's metabolic actions, insulin can dilate arterioles which increase blood flow to metabolically active tissues. This effect is blunted in insulin-resistant subjects. Insulin's effect on SVR, determined by resistance arterioles, has, however, rarely been examined directly. We determined the effects of both hyperinsulinemia and a mixed meal on SVR and its relationship with insulin sensitivity. METHODS: Thirty-seven lean and obese women underwent a hyperinsulinemic-euglycemic clamp, and 24 obese volunteers underwent a mixed-meal test. SVR was assessed using CPP before and during hyperinsulinemia as well as before and 60 and 120 minutes after a meal. RESULTS: SVR decreased significantly during hyperinsulinemia (-13%; p < 0.001) and after the meal (-11%; p < 0.001). Insulin decreased SVR more strongly in insulin-sensitive individuals (standardized ß: -0.44; p = 0.01). In addition, SVR at 60 minutes after meal ingestion was inversely related to the Matsuda index (ß: -0.39; p = 0.04) and the change in postprandial SVR was directly related to postprandial glycemia (ß: 0.53; p < 0.01). CONCLUSIONS: Hyperinsulinemia and meal ingestion decrease SVR, which is directly associated with metabolic insulin resistance. This suggests that resistance to insulin-induced vasodilatation contributes to regulation of vascular resistance.


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Insulina/administración & dosificación , Periodo Posprandial/efectos de los fármacos , Resistencia Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Adolescente , Adulto , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Velocidad del Flujo Sanguíneo/fisiología , Ingestión de Alimentos/fisiología , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Hiperinsulinismo/inducido químicamente , Resistencia a la Insulina , Masculino , Persona de Mediana Edad , Periodo Posprandial/fisiología , Resistencia Vascular/fisiología , Vasodilatación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA