RESUMEN
Circadian clocks regulate much of behavior and physiology, but the mechanisms by which they do so remain poorly understood. While cyclic gene expression is thought to underlie metabolic rhythms, little is known about cycles in cellular physiology. We found that Drosophila insulin-producing cells (IPCs), which are located in the pars intercerebralis and lack an autonomous circadian clock, are functionally connected to the central circadian clock circuit via DN1 neurons. Insulin mediates circadian output by regulating the rhythmic expression of a metabolic gene (sxe2) in the fat body. Patch clamp electrophysiology reveals that IPCs display circadian clock-regulated daily rhythms in firing event frequency and bursting proportion under light:dark conditions. The activity of IPCs and the rhythmic expression of sxe2 are additionally regulated by feeding, as demonstrated by night feeding-induced changes in IPC firing characteristics and sxe2 levels in the fat body. These findings indicate circuit-level regulation of metabolism by clock cells in Drosophila and support a role for the pars intercerebralis in integrating circadian control of behavior and physiology.
Asunto(s)
Ritmo Circadiano/fisiología , Señales (Psicología) , Proteínas de Drosophila/genética , Drosophila/fisiología , Ingestión de Alimentos , Regulación de la Expresión Génica , Animales , Ritmo Circadiano/genética , Drosophila/citología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Fenómenos Electromagnéticos , Cuerpo Adiposo/metabolismo , Insulina/metabolismo , Masculino , Neuronas/fisiologíaRESUMEN
A long-standing challenge is to understand at the atomic level how protein dynamics contribute to enzyme catalysis. X-ray crystallography can provide snapshots of conformational substates sampled during enzymatic reactions, while NMR relaxation methods reveal the rates of interconversion between substates and the corresponding relative populations. However, these current methods cannot simultaneously reveal the detailed atomic structures of the rare states and rationalize the finding that intrinsic motions in the free enzyme occur on a timescale similar to the catalytic turnover rate. Here we introduce dual strategies of ambient-temperature X-ray crystallographic data collection and automated electron-density sampling to structurally unravel interconverting substates of the human proline isomerase, cyclophilin A (CYPA, also known as PPIA). A conservative mutation outside the active site was designed to stabilize features of the previously hidden minor conformation. This mutation not only inverts the equilibrium between the substates, but also causes large, parallel reductions in the conformational interconversion rates and the catalytic rate. These studies introduce crystallographic approaches to define functional minor protein conformations and, in combination with NMR analysis of the enzyme dynamics in solution, show how collective motions directly contribute to the catalytic power of an enzyme.
Asunto(s)
Cristalografía por Rayos X/métodos , Ciclofilina A/química , Modelos Moleculares , Catálisis , Ciclofilina A/genética , Humanos , Mutación , Estructura Terciaria de Proteína , TemperaturaRESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Mutations in related RNA-binding proteins TDP-43, FUS/TLS and TAF15 have been connected to ALS. These three proteins share several features, including the presence of a bioinformatics-predicted prion domain, aggregation-prone nature in vitro and in vivo and toxic effects when expressed in multiple model systems. Given these commonalities, we hypothesized that a related protein, EWSR1 (Ewing sarcoma breakpoint region 1), might also exhibit similar properties and therefore could contribute to disease. Here, we report an analysis of EWSR1 in multiple functional assays, including mutational screening in ALS patients and controls. We identified three missense variants in EWSR1 in ALS patients, which were absent in a large number of healthy control individuals. We show that disease-specific variants affect EWSR1 localization in motor neurons. We also provide multiple independent lines of in vitro and in vivo evidence that EWSR1 has similar properties as TDP-43, FUS and TAF15, including aggregation-prone behavior in vitro and ability to confer neurodegeneration in Drosophila. Postmortem analysis of sporadic ALS cases also revealed cytoplasmic mislocalization of EWSR1. Together, our studies highlight a potential role for EWSR1 in ALS, provide a collection of functional assays to be used to assess roles of additional RNA-binding proteins in disease and support an emerging concept that a class of aggregation-prone RNA-binding proteins might contribute broadly to ALS and related neurodegenerative diseases.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión a Calmodulina/genética , Neuronas Motoras/patología , Proteínas de Unión al ARN/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Proteínas de Unión a Calmodulina/metabolismo , Células Cultivadas , Niño , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Femenino , Genes Reguladores , Variación Genética , Genotipo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Neuronas Motoras/metabolismo , Mutación Missense , Proteína EWS de Unión a ARN , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Adulto JovenRESUMEN
Amyotrophic lateral sclerosis (ALS) is a devastating and universally fatal neurodegenerative disease. Mutations in two related RNA-binding proteins, TDP-43 and FUS, that harbor prion-like domains, cause some forms of ALS. There are at least 213 human proteins harboring RNA recognition motifs, including FUS and TDP-43, raising the possibility that additional RNA-binding proteins might contribute to ALS pathogenesis. We performed a systematic survey of these proteins to find additional candidates similar to TDP-43 and FUS, followed by bioinformatics to predict prion-like domains in a subset of them. We sequenced one of these genes, TAF15, in patients with ALS and identified missense variants, which were absent in a large number of healthy controls. These disease-associated variants of TAF15 caused formation of cytoplasmic foci when expressed in primary cultures of spinal cord neurons. Very similar to TDP-43 and FUS, TAF15 aggregated in vitro and conferred neurodegeneration in Drosophila, with the ALS-linked variants having a more severe effect than wild type. Immunohistochemistry of postmortem spinal cord tissue revealed mislocalization of TAF15 in motor neurons of patients with ALS. We propose that aggregation-prone RNA-binding proteins might contribute very broadly to ALS pathogenesis and the genes identified in our yeast functional screen, coupled with prion-like domain prediction analysis, now provide a powerful resource to facilitate ALS disease gene discovery.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/metabolismo , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Médula Espinal/citología , Factores Asociados con la Proteína de Unión a TATA/genética , Animales , Células Cultivadas , Biología Computacional , Drosophila melanogaster/genética , Estudios de Asociación Genética/métodos , Humanos , Inmunohistoquímica , Mutación Missense/genética , Saccharomyces cerevisiae/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismoRESUMEN
Sleep length and metabolic dysfunction are correlated, but the causal relationship between these processes is unclear. Octopamine promotes wakefulness in the fly by acting through the insulin-producing cells (IPCs) in the fly brain. To determine if insulin signaling mediates the effects of octopamine on sleep:wake behavior, we assayed flies in which insulin signaling activity was genetically altered. We found that increasing insulin signaling does not promote wake, nor does insulin appear to mediate the wake-promoting effects of octopamine. Octopamine also affects metabolism in invertebrate species, including, as we show here, Drosophila melanogaster. Triglycerides are decreased in mutants with compromised octopamine signaling and elevated in flies with increased activity of octopaminergic neurons. Interestingly, this effect is mediated at least partially by insulin, suggesting that effects of octopamine on metabolism are independent of its effects on sleep. We further investigated the relative contribution of metabolic and sleep phenotypes to the starvation response of flies with altered octopamine signaling. Hyperactivity (indicative of foraging) induced by starvation was elevated in octopamine receptor mutants, despite their high propensity for sleep, indicating that their metabolic state dictates their behavioral response under these conditions. Moreover, flies with increased octopamine signaling do not suppress sleep in response to starvation, even though they are normally hyper-aroused, most likely because of their high triglyceride levels. Together, these data suggest that observed correlations between sleep and metabolic phenotypes can result from shared molecular pathways rather than causality, and environmental conditions can lead to the dominance of one phenotype over the other.
Asunto(s)
Octopamina/metabolismo , Transducción de Señal/fisiología , Sueño/fisiología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Insulina/genética , Insulina/metabolismo , Mutación , Octopamina/genética , Receptores de Amina Biogénica/genética , Receptores de Amina Biogénica/metabolismo , Triglicéridos/genética , Triglicéridos/metabolismoRESUMEN
Metabolic homeostasis requires coordination between circadian clocks in different tissues. Also, systemic signals appear to be required for some transcriptional rhythms in the mammalian liver and the Drosophila fat body. Here we show that free-running oscillations of the fat body clock require clock function in the PDF-positive cells of the fly brain. Interestingly, rhythmic expression of the cytochrome P450 transcripts, sex-specific enzyme 1 (sxe1) and Cyp6a21, which cycle in the fat body independently of the local clock, depends upon clocks in neurons expressing neuropeptide F (NPF). NPF signaling itself is required to drive cycling of sxe1 and Cyp6a21 in the fat body, and its mammalian ortholog, Npy, functions similarly to regulate cycling of cytochrome P450 genes in the mouse liver. These data highlight the importance of neuronal clocks for peripheral rhythms, particularly in a specific detoxification pathway, and identify a novel and conserved role for NPF/Npy in circadian rhythms.
Asunto(s)
Relojes Biológicos , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Cuerpo Adiposo/fisiología , Regulación de la Expresión Génica , Fenómenos Fisiológicos del Sistema Nervioso , Neuropéptidos/metabolismo , Animales , MetabolismoRESUMEN
The insulin/insulin-like growth factor signaling (IIS) pathway is well-established as a critical regulator of growth and metabolic homeostasis across the animal kingdom. Insulin-like peptides (ILPs), the functional analogs of mammalian insulin, were initially discovered in the silkmoth Bombyx mori and subsequently identified in many other insect species. Initial research focused on the role of insulin signaling in metabolism, cell proliferation, development, reproduction and aging. More recently however, increasing attention has been given to the role of insulin in the regulation of neuronal function and behavior. Here we review the role of insulin signaling in two specific insect behaviors: feeding and locomotion.
RESUMEN
A proper balance of lipid breakdown and synthesis is essential for achieving energy homeostasis as alterations in either of these processes can lead to pathological states such as obesity. The regulation of lipid metabolism is quite complex with multiple signals integrated to control overall triglyceride levels in metabolic tissues. Based upon studies demonstrating effects of the circadian clock on metabolism, we sought to determine if the central clock cells in the Drosophila brain contribute to lipid levels in the fat body, the main nutrient storage organ of the fly. Here, we show that altering the function of the Drosophila central clock neurons leads to an increase in fat body triglycerides. We also show that although triglyceride levels are not affected by age, they are increased by expression of the amyloid-beta protein in central clock neurons. The effect on lipid storage seems to be independent of circadian clock output as changes in triglycerides are not always observed in genetic manipulations that result in altered locomotor rhythms. These data demonstrate that the activity of the central clock neurons is necessary for proper lipid storage.