Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Haematologica ; 109(1): 231-244, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439377

RESUMEN

DIS3 gene mutations occur in approximately 10% of patients with multiple myeloma (MM); furthermore, DIS3 expression can be affected by monosomy 13 and del(13q), found in roughly 40% of MM cases. Despite the high incidence of DIS3 mutations and deletions, the biological significance of DIS3 and its contribution to MM pathogenesis remain poorly understood. In this study we investigated the functional role of DIS3 in MM, by exploiting a loss-of-function approach in human MM cell lines. We found that DIS3 knockdown inhibits proliferation in MM cell lines and largely affects cell cycle progression of MM plasma cells, ultimately inducing a significant increase in the percentage of cells in the G0/G1 phase and a decrease in the S and G2/M phases. DIS3 plays an important role not only in the control of the MM plasma cell cycle, but also in the centrosome duplication cycle, which are strictly co-regulated in physiological conditions in the G1 phase. Indeed, DIS3 silencing leads to the formation of supernumerary centrosomes accompanied by the assembly of multipolar spindles during mitosis. In MM, centrosome amplification is present in about a third of patients and may represent a mechanism leading to genomic instability. These findings strongly prompt further studies investigating the relevance of DIS3 in the centrosome duplication process. Indeed, a combination of DIS3 defects and deficient spindle-assembly checkpoint can allow cells to progress through the cell cycle without proper chromosome segregation, generating aneuploid cells which ultimately lead to the development of MM.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/patología , Centrosoma/metabolismo , Centrosoma/patología , Mitosis , Ciclo Celular/genética , Inestabilidad Genómica , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo
2.
Haematologica ; 108(1): 219-233, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36073514

RESUMEN

Long non-coding RNA NEAT1 is the core structural component of the nuclear paraspeckle (PS) organelles and it has been found to be deregulated in multiple myeloma (MM) patients. Experimental evidence indicated that NEAT1 silencing negatively impacts proliferation and viability of MM cells, both in vitro and in vivo, suggesting a role in DNA damage repair (DDR). In order to elucidate the biological and molecular relevance of NEAT1 upregulation in MM disease we exploited the CRISPR/Cas9 synergistic activation mediator genome editing system to engineer the AMO-1 MM cell line and generate two clones that para-physiologically transactivate NEAT1 at different levels. NEAT1 overexpression is associated with oncogenic and prosurvival advantages in MM cells exposed to nutrient starvation or a hypoxic microenvironment, which are stressful conditions often associated with more aggressive disease phases. Furthermore, we highlighted the NEAT1 involvement in virtually all DDR processes through, at least, two different mechanisms. On one side NEAT1 positively regulates the posttranslational stabilization of essential PS proteins, which are involved in almost all DDR systems, thus increasing their availability within cells. On the other hand, NEAT1 plays a crucial role as a major regulator of a molecular axis that includes ATM and the catalytic subunit of DNA-PK kinase proteins, and their direct targets pRPA32 and pCHK2. Overall, we provided novel important insightsthe role of NEAT1 in supporting MM cells adaptation to stressful conditions by improving the maintenance of DNA integrity. Taken together, our results suggest that NEAT1, and probably PS organelles, could represent a potential therapeutic target for MM treatment.


Asunto(s)
MicroARNs , Mieloma Múltiple , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , Reparación del ADN , MicroARNs/genética , Mieloma Múltiple/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Activación Transcripcional , Microambiente Tumoral , Regulación hacia Arriba
3.
Cell Mol Life Sci ; 79(5): 259, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35474498

RESUMEN

Delayed wound healing and chronic skin lesions represent a major health problem. Over the past years, growth factors mediated by platelet-rich plasma (PRP) and cell-based therapies were developed as effective and affordable treatment able to improve wound healing capacity. We have advanced existing concepts to develop a highly efficient high-throughput protocol with proven application for the isolation of PRP and pro-angiogenic cells (AngioPRP). This protocol outlines the effectiveness of AngioPRP in promoting the critical healing process including wound closure, re-epithelialization, granulation tissue growth, and blood vessel regeneration. We coupled this effect with normalization of mechanical properties of rescued mouse wounds, which is sustained by a correct arrangement of elastin and collagen fibers. Proteomic analysis of treated wounds demonstrated a fingerprint of AngioPRP based on the up-regulation of detoxification pathway of glutathione metabolism, correlated to a decrease in inflammatory response. Overall, these results have enabled us to provide a framework for how AngioPRP supports wound healing, opening avenues for further clinical advances.


Asunto(s)
Plaquetas , Plasma Rico en Plaquetas , Animales , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Plasma Rico en Plaquetas/metabolismo , Proteómica , Cicatrización de Heridas/fisiología
4.
Hum Mol Genet ; 26(19): 3682-3698, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28666318

RESUMEN

α-Dystroglycanopathies are a group of muscular dystrophies characterized by α-DG hypoglycosylation and reduced extracellular ligand-binding affinity. Among other genes involved in the α-DG glycosylation process, fukutin related protein (FKRP) gene mutations generate a wide range of pathologies from mild limb girdle muscular dystrophy 2I (LGMD2I), severe congenital muscular dystrophy 1C (MDC1C), to Walker-Warburg Syndrome and Muscle-Eye-Brain disease. FKRP gene encodes for a glycosyltransferase that in vivo transfers a ribitol phosphate group from a CDP -ribitol present in muscles to α-DG, while in vitro it can be secreted as monomer of 60kDa. Consistently, new evidences reported glycosyltransferases in the blood, freely circulating or wrapped within vesicles. Although the physiological function of blood stream glycosyltransferases remains unclear, they are likely released from blood borne or distant cells. Thus, we hypothesized that freely or wrapped FKRP might circulate as an extracellular glycosyltransferase, able to exert a "glycan remodelling" process, even at distal compartments. Interestingly, we firstly demonstrated a successful transduction of MDC1C blood-derived CD133+ cells and FKRP L276IKI mouse derived satellite cells by a lentiviral vector expressing the wild-type of human FKRP gene. Moreover, we showed that LV-FKRP cells were driven to release exosomes carrying FKRP. Similarly, we observed the presence of FKRP positive exosomes in the plasma of FKRP L276IKI mice intramuscularly injected with engineered satellite cells. The distribution of FKRP protein boosted by exosomes determined its restoration within muscle tissues, an overall recovery of α-DG glycosylation and improved muscle strength, suggesting a systemic supply of FKRP protein acting as glycosyltransferase.


Asunto(s)
Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/terapia , Proteínas/metabolismo , Animales , Modelos Animales de Enfermedad , Distroglicanos/metabolismo , Exosomas , Glicosilación , Glicosiltransferasas/metabolismo , Humanos , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/metabolismo , Mioblastos/metabolismo , Pentosiltransferasa , Proteínas/genética , Células Satélite del Músculo Esquelético/trasplante , Transferasas
5.
Mol Ther ; 24(11): 1949-1964, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27506452

RESUMEN

Duchenne muscular dystrophy is the most common genetic muscular dystrophy. It is caused by mutations in the dystrophin gene, leading to absence of muscular dystrophin and to progressive degeneration of skeletal muscle. We have demonstrated that the exon skipping method safely and efficiently brings to the expression of a functional dystrophin in dystrophic CD133+ cells injected scid/mdx mice. Golden Retriever muscular dystrophic (GRMD) dogs represent the best preclinical model of Duchenne muscular dystrophy, mimicking the human pathology in genotypic and phenotypic aspects. Here, we assess the capacity of intra-arterial delivered autologous engineered canine CD133+ cells of restoring dystrophin expression in Golden Retriever muscular dystrophy. This is the first demonstration of five-year follow up study, showing initial clinical amelioration followed by stabilization in mild and severe affected Golden Retriever muscular dystrophy dogs. The occurrence of T-cell response in three Golden Retriever muscular dystrophy dogs, consistent with a memory response boosted by the exon skipped-dystrophin protein, suggests an adaptive immune response against dystrophin.


Asunto(s)
Antígeno AC133/metabolismo , Inmunidad Adaptativa , Distrofia Muscular Animal/terapia , Trasplante de Células Madre/métodos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Perros , Estudios de Seguimiento , Humanos , Distrofia Muscular Animal/inmunología , Células Madre/metabolismo , Trasplante Autólogo , Resultado del Tratamiento
6.
J Muscle Res Cell Motil ; 37(3): 101-15, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27443559

RESUMEN

Myofibrillar myopathies (MFMs) are genetically heterogeneous dystrophies characterized by the disintegration of Z-disks and myofibrils and are associated with mutations in genes encoding Z-disk or Z-disk-related proteins. The c.626 C > T (p.P209L) mutation in the BAG3 gene has been described as causative of a subtype of MFM. We report a sporadic case of a 26-year-old Italian woman, affected by MFM with axonal neuropathy, cardiomyopathy, rigid spine, who carries the c.626 C > T mutation in the BAG3 gene. The patient and her non-consanguineous healthy parents and brother were studied with whole exome sequencing (WES) to further investigate the genetic basis of this complex phenotype. In the patient, we found that the BAG3 mutation is associated with variants in the NRAP and FHL1 genes that encode muscle-specific, LIM domain containing proteins. Quantitative real time PCR, immunohistochemistry and Western blot analysis of the patient's muscular biopsy showed the absence of NRAP expression and FHL1 accumulation in aggregates in the affected skeletal muscle tissue. Molecular dynamic analysis of the mutated FHL1 domain showed a modification in its surface charge, which could affect its capability to bind its target proteins. To our knowledge this is the first study reporting, in a BAG3 MFM, the simultaneous presence of genetic variants in the BAG3 and FHL1 genes (previously described as independently associated with MFMs) and linking the NRAP gene to MFM for the first time.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/genética , Proteínas Musculares/genética , Miopatías Estructurales Congénitas/genética , Adulto , Exoma , Femenino , Humanos , Italia , Transfección
7.
Int J Mol Sci ; 11(3): 1070-81, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20480000

RESUMEN

Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission tomography (PET), single-photon emission tomography (SPECT), magnetic resonance (MR) imaging, and X-Ray computed microtomography (microCT). This review examines the use of nanotechnologies for stem cell tracking.


Asunto(s)
Rastreo Celular/métodos , Nanotecnología/métodos , Células Madre/citología , Animales , Humanos , Imagen por Resonancia Magnética , Radiografía , Células Madre/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único
8.
EMBO Mol Med ; 12(1): e11019, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31793167

RESUMEN

Duchenne muscular dystrophy (DMD) is a debilitating fatal X-linked muscle disorder. Recent findings indicate that IGFs play a central role in skeletal muscle regeneration and development. Among IGFs, insulinlike growth factor 2 (IGF2) is a key regulator of cell growth, survival, migration and differentiation. The type 2 IGF receptor (IGF2R) modulates circulating and tissue levels of IGF2 by targeting it to lysosomes for degradation. We found that IGF2R and the store-operated Ca2+ channel CD20 share a common hydrophobic binding motif that stabilizes their association. Silencing CD20 decreased myoblast differentiation, whereas blockade of IGF2R increased proliferation and differentiation in myoblasts via the calmodulin/calcineurin/NFAT pathway. Remarkably, anti-IGF2R induced CD20 phosphorylation, leading to the activation of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase (SERCA) and removal of intracellular Ca2+ . Interestingly, we found that IGF2R expression was increased in dystrophic skeletal muscle of human DMD patients and mdx mice. Blockade of IGF2R by neutralizing antibodies stimulated muscle regeneration, induced force recovery and normalized capillary architecture in dystrophic mdx mice representing an encouraging starting point for the development of new biological therapies for DMD.


Asunto(s)
Músculo Esquelético/crecimiento & desarrollo , Distrofia Muscular de Duchenne/tratamiento farmacológico , Receptor IGF Tipo 2/antagonistas & inhibidores , Regeneración , Animales , Sitios de Unión , Niño , Humanos , Ratones , Ratones Endogámicos mdx , Mioblastos , Adulto Joven
9.
J Cell Physiol ; 221(3): 526-34, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19688776

RESUMEN

Mutations in the dystrophin gene cause an X-linked genetic disorder: Duchenne muscular dystrophy (DMD). Stem cell therapy is an attractive method to treat DMD because a small number of cells are required to obtain a therapeutic effect. Here, we discussed about multiple types of myogenic stem cells and their possible use to treat DMD. The identification of a stem cell population providing efficient muscle regeneration is critical for the progression of cell therapy for DMD. We speculated that the most promising possibility for the treatment of DMD is a combination of different approaches, such as gene and stem cell therapy.


Asunto(s)
Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Trasplante de Células Madre , Antígeno AC133 , Animales , Antígenos CD/análisis , Glicoproteínas/análisis , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Péptidos/análisis , Pericitos/citología , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/trasplante , Células Madre/citología , Células Madre/metabolismo
10.
Sci Rep ; 8(1): 14659, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279586

RESUMEN

Duchenne muscular dystrophy (DMD) is one of the most common and severe forms of muscular dystrophy. Oxidative myofibre content, muscle vasculature architecture and exercise tolerance are impaired in DMD. Several studies have demonstrated that nutrient supplements ameliorate dystrophic features, thereby enhancing muscle performance. Here, we report that dietary supplementation with a specific branched-chain amino acid-enriched mixture (BCAAem) increased the abundance of oxidative muscle fibres associated with increased muscle endurance in dystrophic mdx mice. Amelioration of the fatigue index in BCAAem-treated mdx mice was caused by a cascade of events in the muscle tissue, which were promoted by endothelial nitric oxide synthase (eNOS) activation and vascular endothelial growth factor (VEGF) expression. VEGF induction led to recruitment of bone marrow (BM)-derived endothelial progenitors (EPs), which increased the capillary density of dystrophic skeletal muscle. Functionally, BCAAem mitigated the dystrophic phenotype of mdx mice without inducing dystrophin protein expression or replacing the dystrophin-associated glycoprotein (DAG) complex in the membrane, which is typically lost in DMD. BCAAem supplementation could be an effective adjuvant strategy in DMD treatment.


Asunto(s)
Aminoácidos/administración & dosificación , Suplementos Dietéticos , Distrofia Muscular de Duchenne/dietoterapia , Animales , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Fuerza Muscular/efectos de los fármacos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Resistencia Física/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA