Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 23(8): 1183-1192, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35902637

RESUMEN

Anti-programmed death-1 (anti-PD-1) immunotherapy reinvigorates CD8 T cell responses in patients with cancer but PD-1 is also expressed by other immune cells, including follicular helper CD4 T cells (Tfh) which are involved in germinal centre responses. Little is known, however, about the effects of anti-PD-1 immunotherapy on noncancer immune responses in humans. To investigate this question, we examined the impact of anti-PD-1 immunotherapy on the Tfh-B cell axis responding to unrelated viral antigens. Following influenza vaccination, a subset of adults receiving anti-PD-1 had more robust circulating Tfh responses than adults not receiving immunotherapy. PD-1 pathway blockade resulted in transcriptional signatures of increased cellular proliferation in circulating Tfh and responding B cells compared with controls. These latter observations suggest an underlying change in the Tfh-B cell and germinal centre axis in a subset of immunotherapy patients. Together, these results demonstrate dynamic effects of anti-PD-1 therapy on influenza vaccine responses and highlight analytical vaccination as an approach that may reveal underlying immune predisposition to adverse events.


Asunto(s)
Vacunas contra la Influenza , Adulto , Humanos , Inmunidad Humoral , Estaciones del Año , Linfocitos T Colaboradores-Inductores , Vacunación
2.
J Hepatol ; 77(2): 525-538, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35259469

RESUMEN

There have been unprecedented advances in the identification of new treatment targets for chronic hepatitis B that are being developed with the goal of achieving functional cure in patients who would otherwise require lifelong nucleoside analogue treatment. Many of the new investigational therapies either directly target the immune system or are anticipated to impact immunity indirectly through modulation of the viral lifecycle and antigen production. While new viral biomarkers (HBV RNA, HBcAg, small, middle, large HBs isoforms) are proceeding through validation steps in clinical studies, immunological biomarkers are non-existent outside of clinical assays for antibodies to HBs, HBc and HBe. To develop clinically applicable immunological biomarkers to measure mechanisms of action, inform logical combination strategies, and guide clinical management for use and discontinuation of immune-targeting drugs, immune assays must be incorporated into phase I/II clinical trials. This paper will discuss the importance of sample collection, the assays available for immunological analyses, their advantages/disadvantages and suggestions for their implementation in clinical trials. Careful consideration must be given to ensure appropriate immunological studies are included as a primary component of the trial with deeper immunological analysis provided by ancillary studies. Standardising immunological assays and data obtained from clinical trials will identify biomarkers that can be deployed in the clinic, independently of specialised immunology laboratories.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Biomarcadores , ADN Viral/genética , Anticuerpos contra la Hepatitis B , Antígenos del Núcleo de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B/genética , Humanos
3.
Antimicrob Agents Chemother ; 65(12): e0077221, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34543092

RESUMEN

Antivirals are urgently needed to combat the global SARS-CoV-2/COVID-19 pandemic, supplement existing vaccine efforts, and target emerging SARS-CoV-2 variants of concern. Small molecules that interfere with binding of the viral spike receptor binding domain (RBD) to the host angiotensin-converting enzyme II (ACE2) receptor may be effective inhibitors of SARS-CoV-2 cell entry. Here, we screened 512 pure compounds derived from natural products using a high-throughput RBD/ACE2 binding assay and identified (-)-hopeaphenol, a resveratrol tetramer, in addition to vatalbinoside A and vaticanol B, as potent and selective inhibitors of RBD/ACE2 binding and viral entry. For example, (-)-hopeaphenol disrupted RBD/ACE2 binding with a 50% inhibitory concentration (IC50) of 0.11 µM, in contrast to an IC50 of 28.3 µM against the unrelated host ligand/receptor binding pair PD-1/PD-L1 (selectivity index, 257.3). When assessed against the USA-WA1/2020 variant, (-)-hopeaphenol also inhibited entry of a VSVΔG-GFP reporter pseudovirus expressing SARS-CoV-2 spike into ACE2-expressing Vero-E6 cells and in vitro replication of infectious virus in cytopathic effect and yield reduction assays (50% effective concentrations [EC50s], 10.2 to 23.4 µM) without cytotoxicity and approaching the activities of the control antiviral remdesivir (EC50s, 1.0 to 7.3 µM). Notably, (-)-hopeaphenol also inhibited two emerging variants of concern, B.1.1.7/Alpha and B.1.351/Beta in both viral and spike-containing pseudovirus assays with similar or improved activities over the USA-WA1/2020 variant. These results identify (-)-hopeaphenol and related stilbenoid analogues as potent and selective inhibitors of viral entry across multiple SARS-CoV-2 variants of concern.


Asunto(s)
COVID-19 , Estilbenos , Humanos , Pandemias , Fenoles , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
Virol J ; 18(1): 242, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876153

RESUMEN

BACKGROUND: Chronic hepatitis B virus (HBV) infection (CHB) is a significant public health problem that could benefit from treatment with immunomodulators. Here we describe a set of therapeutic HBV vaccines that target the internal viral proteins. METHODS: Vaccines are delivered by chimpanzee adenovirus vectors (AdC) of serotype 6 (AdC6) and 7 (AdC7) used in prime only or prime-boost regimens. The HBV antigens are fused into an early T cell checkpoint inhibitor, herpes simplex virus (HSV) glycoprotein D (gD), which enhances and broadens vaccine-induced cluster of differentiation (CD8)+ T cell responses. RESULTS: Our results show that the vaccines are immunogenic in mice. They induce potent CD8+ T cell responses that recognize multiple epitopes. CD8+ T cell responses increase after a boost, although the breadth remains similar. In mice, which carry high sustained loads of HBV particles due to a hepatic infection with an adeno-associated virus (AAV)8 vector expressing the 1.3HBV genome, CD8+ T cell responses to the vaccines are attenuated with a marked shift in the CD8+ T cells' epitope recognition profile. CONCLUSIONS: Our data show that in different stains of mice including those that carry a human major histocompatibility complex (MHC) class I antigen HBV vaccines adjuvanted with a checkpoint inhibitor induce potent and broad HBV-specific CD8+ T cell responses and lower but still detectable CD4+ T cell responses. CD8+ T cell responses are reduced and their epitope specificity changes in mice that are chronically exposed to HBV antigens. Implications for the design of therapeutic HBV vaccines are discussed.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Animales , Linfocitos T CD8-positivos , Epítopos de Linfocito T/genética , Vacunas contra Hepatitis B , Virus de la Hepatitis B/genética , Ratones , Infección Persistente
5.
Mol Ther ; 28(3): 771-783, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31839483

RESUMEN

Transfer of genes by adeno-associated virus (AAV) vectors is benefiting patients with particular genetic defects. Challenges remain by rejection of AAV-transduced cells, which may be caused by CD8+ T lymphocytes directed to AAV capsid antigens. Reducing the number of CpG motifs from the genome of AAV vectors reduces expansion of naive T cells directed against an epitope within the capsid. In contrast, AAV capsid-specific memory CD8+ T cells respond more vigorously to AAV vectors lacking CpG motifs than to those with CpG motifs presumably reflecting dampening of T cell expansion by cytokines from the innate immune system. Depending on the purification method, AAV vector preparations can contain substantial amounts of empty AAV particles that failed to package the genome. Others have used empty particles as decoys to AAV-neutralizing antibodies. We tested if empty AAV vectors given alone or mixed with genome-containing AAV vectors induce proliferation of naive or memory CD8+ T cells directed to an antigen within an AAV capsid. Naive CD8+ T cells failed to respond to empty AAV vectors, which in contrast induced expansion of AAV-specific memory CD8+ T cells.


Asunto(s)
Composición de Base , Linfocitos T CD8-positivos/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Dependovirus/genética , Dependovirus/inmunología , Vectores Genéticos/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Proteínas de la Cápside/química , Técnicas de Transferencia de Gen , Vectores Genéticos/efectos adversos , Vectores Genéticos/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Memoria Inmunológica , Activación de Linfocitos/inmunología , Ratones , Motivos de Nucleótidos , Transducción Genética
7.
Biologicals ; 64: 83-95, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32089431

RESUMEN

Rabies is a major neglected zoonotic disease and causes a substantial burden in the Asian region. Currently, Pacific Oceania is free of rabies but enzootic areas throughout southeast Asia represent a major risk of disease introduction to this region. On September 25-26, 2019, researchers, government officials and related stakeholders met at an IABS conference in Bangkok, Thailand to engage on the topic of human rabies mediated by dogs. The objective of the meeting was focused upon snowballing efforts towards achieving substantial progress in rabies prevention, control and elimination within Asia by 2030, and thereby to safeguard the Pacific region. Individual sessions focused upon domestic animal, wildlife and human vaccination; the production and evaluation of quality, safety and efficacy of existing rabies biologics; and the future development of new products. Participants reviewed the progress to date in eliminating canine rabies by mass vaccination, described supportive methods to parenteral administration by oral vaccine application, considered updated global and local approaches at human prophylaxis and discussed the considerable challenges ahead. Such opportunities provide continuous engagement on disease management among professionals at a trans-disciplinary level and promote new applied research collaborations in a modern One Health context.


Asunto(s)
Enfermedades de los Perros , Vacunas Antirrábicas/uso terapéutico , Rabia , Zoonosis , Animales , Congresos como Asunto , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/prevención & control , Perros , Humanos , Rabia/epidemiología , Rabia/prevención & control , Tailandia , Zoonosis/epidemiología , Zoonosis/prevención & control
8.
Cell Immunol ; 342: 103722, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-29195742

RESUMEN

Although gene transfer using adeno-associated virus (AAV) vectors has made tremendous progress in recent years, challenges remain due to vector-specific adaptive immune responses. Specifically, AAV-neutralizing antibodies reduce AAV-transduction rates, while CD8+ T cells directed to AAV capsid antigens cause rejection of AAV-transduced cells. This has been addressed clinically by excluding humans with pre-existing AAV-neutralizing antibodies from gene transfer trials or by using immunosuppression or reduced doses of vectors expressing improved transgene products to blunt or circumvent destructive T cell responses. Although these approaches have met with success for treatment of some diseases, most notably hemophilia B, they may not be suitable for others. Pre-clinical models are thus needed to test alternative options to sidestep pre-existing AAV-neutralizing antibodies, to prevent their induction following gene transfer and to block the detrimental effects of CD8+ T cells directed to AAV capsid antigens. This chapter describes some of the available, although not yet perfect, models that can assess immune responses to AAV gene transfer.


Asunto(s)
Dependovirus/inmunología , Vectores Genéticos/inmunología , Inmunidad Adaptativa , Traslado Adoptivo , Animales , Linfocitos T CD8-positivos/inmunología , Proteínas de la Cápside/inmunología , Quimera , Dependovirus/genética , Humanos , Modelos Animales
9.
Clin Infect Dis ; 67(3): 327-333, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29471464

RESUMEN

Background: Influenza vaccination aims to prevent infection by influenza virus and reduce associated morbidity and mortality; however, vaccine effectiveness (VE) can be modest, especially for subtype A(H3N2). Low VE has been attributed to mismatches between the vaccine and circulating influenza strains and to the vaccine's elicitation of protective immunity in only a subset of the population. The low H3N2 VE in the 2012-2013 season was attributed to egg-adaptive mutations that created antigenic mismatch between the actual vaccine strain (IVR-165) and both the intended vaccine strain (A/Victoria/361/2011) and the predominant circulating strains (clades 3C.2 and 3C.3). Methods: We investigated the basis of low VE in 2012-2013 by determining whether vaccinated and unvaccinated individuals were infected by different viral strains and by assessing the serologic responses to IVR-165, A/Victoria/361/2011, and 3C.2 and 3C.3 strains in an adult cohort before and after vaccination. Results: We found no significant genetic differences between the strains that infected vaccinated and unvaccinated individuals. Vaccination increased titers to A/Victoria/361/2011 and 3C.2 and 3C.3 representative strains as much as to IVR-165. These results are consistent with the hypothesis that vaccination boosted cross-reactive immune responses instead of specific responses against unique vaccine epitopes. Only approximately one-third of the cohort achieved a ≥4-fold increase in titer. Conclusions: In contrast to analyses based on ferret studies, low H3N2 VE in 2012-2013 in adults does not appear to be due to egg adaptation of the vaccine strain. Instead, low VE might have been caused by low vaccine immunogenicity in a subset of the population.


Asunto(s)
Inmunogenicidad Vacunal , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/epidemiología , Adaptación Fisiológica , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígenos Virales/inmunología , Estudios de Cohortes , Reacciones Cruzadas , Huevos/virología , Hurones , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Mutación , Filogenia , Estaciones del Año
11.
Cancer Immunol Immunother ; 67(10): 1533-1544, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30051333

RESUMEN

Human immunotherapy with checkpoint blockades has achieved significant breakthroughs in recent years. In this study, a checkpoint blockade vaccine for canine melanoma was tested for safety and immunogenicity. Five healthy adult dogs received a mixture of three replication-defective chimpanzee-derived adenoviral vectors, one expressing mouse fibroblast-associated protein (mFAP) and the others expressing canine melanoma-associated antigens Trp-1 or Trp-2 fused into Herpes Simplex-1 glycoprotein D, a checkpoint inhibitor of herpes virus entry mediator (HVEM) pathways. The vaccine mixture was shown to be well tolerated and increased frequencies of canineTrp-1-specific activated CD8+ and CD4+ T cells secreting interferon-(IFN)-γ, tumor necrosis factor (TNF)-α, or interleukin (IL)-2 alone or in combinations in four and five out of five dogs, respectively. To avoid excessive bleeds, responses to cTrp-2 were not analyzed. All dogs responded with increased frequencies of mFAP-specific activated CD8+ and CD4+ T cells. The results of this safety/immunogenicity trial invite further testing of this checkpoint blockade vaccine combination in dogs with melanoma.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/inmunología , Vectores Genéticos/administración & dosificación , Vectores Genéticos/inmunología , Inmunoterapia , Melanoma/terapia , Animales , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/genética , Perros , Endopeptidasas , Gelatinasas/genética , Interferón gamma/metabolismo , Interleucina-2/metabolismo , Masculino , Melanoma/genética , Melanoma/inmunología , Proteínas de la Membrana/genética , Ratones , Oxidorreductasas/genética , Serina Endopeptidasas/genética
12.
Immun Ageing ; 15: 19, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186359

RESUMEN

BACKGROUND: The elderly patient population is the most susceptible to influenza virus infection and its associated complications. Polypharmacy is common in the aged, who often have multiple co-morbidities. Previous studies have demonstrated that commonly used prescription drugs can have extensive impact on immune defenses and responses to vaccination. In this study, we examined how the dynamics of immune responses to the two influenza A virus strains of the trivalent inactivated influenza vaccine (TIV) can be affected by patient's history of using the prescription drugs Metformin, NSAIDs or Statins. RESULTS: We provide evidence for differential antibody (Ab) production, B-cell phenotypic changes, alteration in immune cell proportions and transcriptome-wide perturbation in individuals with a history of long-term medication use, compared with non-users. We noted a diminished response to TIV in the elderly on Metformin, whereas those on NSAIDs or Statins had higher baseline responses but reduced relative increases in virus-neutralizing Abs (VNAs) or Abs detected by an enzyme-linked immunosorbent assay (ELISA) following vaccination. CONCLUSION: Collectively, our findings suggest novel pathways that might underlie how long-term medication use impacts immune response to influenza vaccination in the elderly. They provide a strong rationale for targeting the medication-immunity interaction in the aged population to improve vaccination responses.

13.
Proc Natl Acad Sci U S A ; 112(2): 518-23, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25550504

RESUMEN

An effective T-cell-based AIDS vaccine should induce strong HIV-specific CD8(+) T cells in mucosal tissues without increasing the availability of target cells for the virus. Here, we evaluated five immunization strategies that include Human adenovirus-5 (AdHu5), Chimpanzee adenovirus-6 (AdC6) or -7 (AdC7), Vaccinia virus (VV), and DNA given by electroporation (DNA/EP), all expressing Simian immunodeficiency virus group specific antigen/transactivator of transcription (SIV(mac239Gag/Tat)). Five groups of six rhesus macaques (RMs) each were vaccinated with DNA/EP-AdC6-AdC7, VV-AdC6-AdC7, DNA/-EP-VV-AdC6, DNA/EP-VV-AdC7, or AdHu5-AdHu5-AdHu5 and were challenged repeatedly with low-dose intrarectal SIVmac239. Upon challenge, there were no significant differences among study groups in terms of virus acquisition or viral load after infection. When taken together, the immunization regimens did not protect against SIV acquisition compared with controls but did result in an ∼ 1.6-log decline in set-point viremia. Although all immunized RMs had detectable SIV-specific CD8(+) T cells in blood and rectal mucosa, we found no correlation between the number or function of these SIV-specific CD8(+) T cells and protection against SIV acquisition. Interestingly, RMs experiencing breakthrough infection showed significantly higher prechallenge levels of CD4(+)C-C chemokine receptor type 5 (CCR5)(+)HLA-DR(+) T cells in the rectal biopsies (RB) than animals that remained uninfected. In addition, among the infected RMs, the percentage of CD4(+)CCR5(+)Ki-67(+) T cells in RBs prechallenge correlated with higher early viremia. Overall, these data suggest that the levels of activated CD4(+)CCR5(+) target T cells in the rectal mucosa may predict the risk of SIV acquisition in RMs vaccinated with vectors that express SIVGag/Tat.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Vacunas contra el SIDAS/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/virología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Productos del Gen gag/inmunología , Productos del Gen tat/inmunología , Humanos , Inmunidad Celular , Inmunidad Mucosa , Activación de Linfocitos , Macaca mulatta/inmunología , Macaca mulatta/virología , Receptores CCR5/metabolismo , Recto/inmunología , Recto/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Vacunación/métodos , Viremia/inmunología , Viremia/prevención & control
14.
Bull World Health Organ ; 95(3): 210-219C, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28250534

RESUMEN

OBJECTIVE: To review the safety and immunogenicity of pre-exposure rabies prophylaxis (including accelerated schedules, co-administration with other vaccines and booster doses), its cost-effectiveness and recommendations for use, particularly in high-risk settings. METHODS: We searched the PubMed, Centre for Agriculture and Biosciences International, Cochrane Library and Web of Science databases for papers on pre-exposure rabies prophylaxis published between 2007 and 29 January 2016. We reviewed field data from pre-exposure prophylaxis campaigns in Peru and the Philippines. FINDINGS: Pre-exposure rabies prophylaxis was safe and immunogenic in children and adults, also when co-administered with routine childhood vaccinations and the Japanese encephalitis vaccine. The evidence available indicates that shorter regimens and regimens involving fewer doses are safe and immunogenic and that booster intervals could be extended up to 10 years. The few studies on cost suggest that, at current vaccine and delivery costs, pre-exposure prophylaxis campaigns would not be cost-effective in most situations. Although pre-exposure prophylaxis has been advocated for high-risk populations, only Peru and the Philippines have implemented appropriate national programmes. In the future, accelerated regimens and novel vaccines could simplify delivery and increase affordability. CONCLUSION: Pre-exposure rabies prophylaxis is safe and immunogenic and should be considered: (i) where access to postexposure prophylaxis is limited or delayed; (ii) where the risk of exposure is high and may go unrecognized; and (iii) where controlling rabies in the animal reservoir is difficult. Pre-exposure prophylaxis should not distract from canine vaccination efforts, provision of postexposure prophylaxis or education to increase rabies awareness in local communities.


Asunto(s)
Países en Desarrollo , Vacunas Antirrábicas/administración & dosificación , Vacunas Antirrábicas/economía , Factores de Edad , Animales , Mordeduras y Picaduras/virología , Quirópteros , Análisis Costo-Beneficio , Perros , Servicios de Salud/economía , Servicios de Salud/estadística & datos numéricos , Humanos , Programas de Inmunización , Esquemas de Inmunización , Modelos Econométricos , Perú , Filipinas , Factores de Riesgo , Factores de Tiempo
15.
Mol Ther ; 24(6): 1042-1049, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27019999

RESUMEN

Adeno-associated viral (AAV) vectors are currently being tested in multiple clinical trials for liver-directed gene transfer to treat the bleeding disorders hemophilia A and B and metabolic disorders. The optimal viral capsid for transduction of human hepatocytes has been under active investigation, but results across various models are inconsistent. We tested in vivo transduction in "humanized" mice. Methods to quantitate percent AAV transduced human and murine hepatocytes in chimeric livers were optimized using flow cytometry and confocal microscopy with image analysis. Distinct transduction efficiencies were noted following peripheral vein administration of a self-complementary vector expressing a gfp reporter gene. An engineered AAV3 capsid with two amino acid changes, S663V+T492V (AAV3-ST), showed best efficiency for human hepatocytes (~3-times, ~8-times, and ~80-times higher than for AAV9, AAV8, and AAV5, respectively). AAV5, 8, and 9 were more efficient in transducing murine than human hepatocytes. AAV8 yielded the highest transduction rate of murine hepatocytes, which was 19-times higher than that for human hepatocytes. In summary, our data show substantial differences among AAV serotypes in transduction of human and mouse hepatocytes, are the first to report on AAV5 in humanized mice, and support the use of AAV3-based vectors for human liver gene transfer.


Asunto(s)
Proteínas de la Cápside/genética , Dependovirus/genética , Vectores Genéticos/administración & dosificación , Hepatocitos/ultraestructura , Animales , Células Cultivadas , Dependovirus/metabolismo , Hepatocitos/metabolismo , Humanos , Ratones , Especificidad de Órganos , Ingeniería de Proteínas , Transducción Genética
16.
J Virol ; 89(15): 7841-51, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25995265

RESUMEN

UNLABELLED: Influenza infection causes severe disease and death in humans. In traditional vaccine research and development, a single high-dose virus challenge of animals is used to evaluate vaccine efficacy. This type of challenge model may have limitations. In the present study, we developed a novel challenge model by infecting mice repeatedly in short intervals with low doses of influenza A virus. Our results show that compared to a single high-dose infection, mice that received repeated low-dose challenges showed earlier morbidity and mortality and more severe disease. They developed higher vial loads, more severe lung pathology, and greater inflammatory responses and generated only limited influenza A virus-specific B and T cell responses. A commercial trivalent influenza vaccine protected mice against a single high and lethal dose of influenza A virus but was ineffective against repeated low-dose virus challenges. Overall, our data show that the repeated low-dose influenza A virus infection mouse model is more stringent and may thus be more suitable to select for highly efficacious influenza vaccines. IMPORTANCE: Influenza epidemics and pandemics pose serious threats to public health. Animal models are crucial for evaluating the efficacy of influenza vaccines. Traditional models based on a single high-dose virus challenge may have limitations. Here, we describe a new mouse model based on repeated low-dose influenza A virus challenges given within a short period. Repeated low-dose challenges caused more severe disease in mice, associated with higher viral loads and increased lung inflammation and reduced influenza A virus-specific B and T cell responses. A commercial influenza vaccine that was shown to protect mice from high-dose challenge was ineffective against repeated low-dose challenges. Overall, our results show that the low-dose repeated-challenge model is more stringent and may therefore be better suited for preclinical vaccine efficacy studies.


Asunto(s)
Modelos Animales de Enfermedad , Subtipo H1N1 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Ratones , Animales , Anticuerpos Antivirales/inmunología , Embrión de Pollo , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/inmunología , Gripe Humana/patología , Gripe Humana/virología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ratones Endogámicos C57BL
17.
J Immunol ; 193(4): 1836-46, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25024391

RESUMEN

Two vaccines expressing CD4(+) and CD8(+) T cell epitopes of melanoma-associated Ags (MAAs) by a chimpanzee-derived replication-defective AdC68 vector were compared in a mouse model of melanoma. In one vaccine, termed AdC68-gDMelapoly, the epitopes were expressed as a fusion protein within HSV-1 glycoprotein D (gD), which blocks immunoinhibitory signaling through the herpes virus entry mediator pathway. The other vaccine, termed AdC68-Melapoly, expressed only the MAA epitopes. AdC68-gDMelapoly induced more potent MAA-specific CD8(+) T cell responses especially to the subdominant MAA epitopes. Upon prophylactic vaccination, mice that developed CD8(+) T cell responses to the two vaccines that were comparable in magnitude showed equal protection against tumor challenge. When mice were first challenged with tumor cells and then vaccinated results differed. In animals with comparable CD8(+) T cell responses, the AdC68-gDMelapoly vaccine was more efficacious compared with the AdC68-Melapoly vaccine in delaying tumor growth. This effect was linked to reduced expression of 2B4, LAG-3, and programmed death-1 on tumor-infiltrating MAA-specific CD8(+) T cells elicited by the gD-adjuvanted vaccine, suggesting that CD8(+) T cells induced in presence of gD are less susceptible to tumor-driven exhaustion.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/inmunología , Melanoma/terapia , Proteínas del Envoltorio Viral/inmunología , Adyuvantes Inmunológicos , Animales , Antígenos CD/biosíntesis , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Quimioterapia Adyuvante , Epítopos de Linfocito T/inmunología , Femenino , Hemaglutininas Virales/genética , Hemaglutininas Virales/inmunología , Herpesvirus Humano 1/inmunología , Activación de Linfocitos/inmunología , Melanoma/inmunología , Melanoma/prevención & control , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/biosíntesis , Receptores Inmunológicos/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Proteínas del Envoltorio Viral/genética , Proteína del Gen 3 de Activación de Linfocitos
18.
J Immunol ; 193(7): 3528-37, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25172499

RESUMEN

Although influenza vaccination is recommended for all adults annually, the incidence of vaccine failure, defined as weak or absent increase in neutralizing Ab titers, is increased in the elderly compared with young adults. The T follicular helper cell (Tfh) subset of CD4 T cells provides B cell help in germinal centers and is necessary for class-switched Ab responses. Previous studies suggested a role for circulating Tfh cells (cTfh) following influenza vaccination in adults, but cTfh have not been studied in elderly adults in whom weak vaccine responses are often observed. In this study, we studied cTfh expressing CXCR5 and programmed death-1 (PD-1). cTfh from elderly adults were present at reduced frequency, had decreased in vitro B cell help ability, and had greater expression of ICOS compared with young adults. At 7 d after inactivated influenza vaccination, cTfh correlated with influenza vaccine-specific IgM and IgG responses in young adults but not in elderly adults. In sum, we have identified aging-related changes in cTfh that correlated with reduced influenza vaccine responses. Future rational vaccine design efforts should incorporate Tfh measurement as an immune correlate of protection, particularly in the setting of aging.


Asunto(s)
Envejecimiento/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Vacunas contra la Influenza/administración & dosificación , Receptor de Muerte Celular Programada 1 , Receptores CXCR5 , Adulto , Factores de Edad , Envejecimiento/sangre , Anticuerpos Antivirales/sangre , Linfocitos B/citología , Linfocitos T CD4-Positivos/metabolismo , Femenino , Centro Germinal/citología , Centro Germinal/inmunología , Centro Germinal/metabolismo , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Vacunas contra la Influenza/inmunología , Masculino
19.
Blood ; 121(12): 2224-33, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23325831

RESUMEN

Recent clinical trials have shown that evasion of CD8(+) T-cell responses against viral capsid is critical for successful liver-directed gene therapy with adeno-associated viral (AAV) vectors for hemophilia. Preclinical models to test whether use of alternate serotypes or capsid variants could avoid this deleterious response have been lacking. Here, the ability of CD8(+) T cells ("cap-CD8," specific for a capsid epitope presented by human B*0702 or murine H2-L(d) molecules) to target AAV-infected hepatocytes was investigated. In a murine model based on adoptive transfer of ex vivo expanded cap-CD8, AAV2-transduced livers showed CD8(+) T-cell infiltrates, transaminitis, significant reduction in factor IX transgene expression, and loss of transduced hepatocytes. AAV8 gene transfer resulted in prolonged susceptibility to cap-CD8, consistent with recent clinical findings. In contrast, using an AAV2(Y-F) mutant capsid, which is known to be less degraded by proteasomes, preserved transgene expression and largely avoided hepatotoxicity. In vitro assays confirmed reduced major histocompatibility complex class I presentation of this capsid and killing of human or murine hepatocytes compared with AAV2. In conclusion, AAV capsids can be engineered to substantially reduce the risk of destruction by cytotoxic T lymphocytes, whereas use of alternative serotypes per se does not circumvent this obstacle.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Proteínas de la Cápside/inmunología , Dependovirus/fisiología , Terapia Genética/métodos , Vectores Genéticos/fisiología , Hepatocitos/inmunología , Traslado Adoptivo/métodos , Animales , Linfocitos T CD8-positivos/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Células Cultivadas , Dependovirus/genética , Dependovirus/inmunología , Dependovirus/metabolismo , Ingeniería Genética , Vectores Genéticos/genética , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Especificidad del Receptor de Antígeno de Linfocitos T/genética , Transducción Genética
20.
Mol Ther ; 22(1): 42-51, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24077034

RESUMEN

Self-complementary adeno-associated viral (AAV) vectors expressing human factor IX (hF.IX) have achieved transient or sustained correction of hemophilia B in human volunteers. High doses of AAV2 or AAV8 vectors delivered to the liver caused in several patients an increase in transaminases accompanied by a rise in AAV capsid-specific T cells and a decrease in circulating hF.IX levels suggesting immune-mediated destruction of vector-transduced cells. Kinetics of these adverse events differed in patients receiving AAV2 or AAV8 vectors causing rise in transaminases at 3 versus 8 weeks after vector injection, respectively. To test if CD8+ T cells to AAV8 vectors, which are similar to AAV2 vectors are fully-gutted vectors and thereby fail to encode structural viral proteins, could cause damage at this late time point, we tested in a series of mouse studies how long major histocompatibility (MHC) class I epitopes within AAV8 capsid can be presented to CD8+ T cells. Our results clearly show that depending on the vectors' genome, CD8+ T cells can detect such epitopes on AAV8's capsid for up to 6 months indicating that the capsid of AAV8 degrades slowly in mice.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Cápside/inmunología , Dependovirus/inmunología , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Genoma , Animales , Proteínas de la Cápside/inmunología , Dependovirus/genética , Epítopos de Linfocito T , Vectores Genéticos/normas , Humanos , Memoria Inmunológica , Activación de Linfocitos/inmunología , Masculino , Ratones , Control de Calidad , Especificidad del Receptor de Antígeno de Linfocitos T , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA