RESUMEN
The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
Asunto(s)
Microbioma Gastrointestinal , Humanos , Homeostasis , Sistema Inmunológico , RegeneraciónRESUMEN
BACKGROUND AND AIMS: Cardiometabolic diseases refer to a group of interrelated conditions, sharing metabolic dysfunctions like insulin resistance, obesity, dyslipidemia, and hypertension. The gut microbiota has been associated with CMD and related conditions. Alterations in the intestinal epithelium permeability triggered by chronic stress and diet could bridge gut microbiota with inflammation and CMD development. Here, we assessed the relationship between intestinal permeability and circulating SCFAs with cardiometabolic health status (CMHS) and gut microbiota in a sample of 116 Colombian adults. METHODS AND RESULTS: Plasma levels of lipopolysaccharide-binding protein (LBP), intestinal fatty acid-binding protein (I-FABP), claudin-3, and purported zonulin peptides (PZP) were measured by ELISA, whereas plasmatic levels of acetate, propionate, butyrate, isobutyrate, and valerate were measured by gas chromatography/mass spectrometry. In addition, for further statistical analysis, we took data previously published by us on this cohort, including gut microbiota and multiple CMD risk factors that served to categorize subjects as cardiometabolically healthy or cardiometabolically abnormal. From univariate and multivariate statistical analyses, we found the levels of I-FABP, LBP, and PZP increased in the plasma of cardiometabolically abnormal individuals, although only PZP reached statistical significance. CONCLUSIONS: Our results did not confirm the applicability of I-FABP, LBP, claudin-3, or SCFAs as biomarkers for associating intestinal permeability with the cardiometabolic health status in these subjects. On the other hand, the poorly characterized peptides detected with the ELISA kit branded as "zonulin" were inversely associated with cardiometabolic dysfunctions and gut microbiota. Further studies to confirm the true identity of these peptides are warranted.
Asunto(s)
Microbioma Gastrointestinal , Hipertensión , Adulto , Humanos , Claudina-3 , Intestinos , PermeabilidadRESUMEN
Culture-independent methods have granted the possibility to study microbial diversity in great detail, but technical issues pose a threat to the accuracy of new findings. Biases introduced during DNA extraction can result in erroneous representations of the microbial community, particularly in samples with low microbial biomass. We evaluated the DNA extraction method, initial sample biomass, and reagent contamination on the assessment of the human gut microbiota. Fecal samples of 200 mg were subjected to 1:10 serial dilutions; total DNA was obtained using two commercial kits and the microbiota assessed by 16S ribosomal RNA (rRNA) gene sequencing. In addition, we sequenced multiple technical controls. The two kits were efficient in extracting DNA from samples with as low as 2 mg of feces. However, in instances of lower biomass, only one kit performed well. The number of reads from negative controls was negligible. Both DNA extraction kits allowed inferring microbial consortia with similar membership but different abundances. Furthermore, we found differences in the taxonomic profile of the microbial community. Unexpectedly, the effect of sample dilution was moderate and did not introduce severe bias into the microbial inference. Indeed, the microbiota inferred from fecal samples was distinguishable from that of negative controls. In most cases, samples as low as 2 mg did not result in a dissimilar representation of the microbial community compared with the undiluted sample. Our results indicate that the gut microbiota inference is not much affected by contamination with laboratory reagents but largely impacted by the protocol to extract DNA.
Asunto(s)
Contaminación de ADN , ADN/aislamiento & purificación , Heces/microbiología , Microbioma Gastrointestinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Ribosómico 16S/genética , ADN/genética , ADN Bacteriano/genética , Humanos , Indicadores y Reactivos , Metagenómica/métodos , Consorcios Microbianos/genética , Microbiota/genética , ARN Ribosómico 16S/química , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: The composition of the gut microbiota has recently been associated with health and disease, particularly with obesity. Some studies suggested a higher proportion of Firmicutes and a lower proportion of Bacteroidetes in obese compared to lean people; others found discordant patterns. Most studies, however, focused on Americans or Europeans, giving a limited picture of the gut microbiome. To determine the generality of previous observations and expand our knowledge of the human gut microbiota, it is important to replicate studies in overlooked populations. Thus, we describe here, for the first time, the gut microbiota of Colombian adults via the pyrosequencing of the 16S ribosomal DNA (rDNA), comparing it with results obtained in Americans, Europeans, Japanese and South Koreans, and testing the generality of previous observations concerning changes in Firmicutes and Bacteroidetes with increasing body mass index (BMI). RESULTS: We found that the composition of the gut microbiota of Colombians was significantly different from that of Americans, Europeans and Asians. The geographic origin of the population explained more variance in the composition of this bacterial community than BMI or gender. Concerning changes in Firmicutes and Bacteroidetes with obesity, in Colombians we found a tendency in Firmicutes to diminish with increasing BMI, whereas no change was observed in Bacteroidetes. A similar result was found in Americans. A more detailed inspection of the Colombian dataset revealed that five fiber-degrading bacteria, including Akkermansia, Dialister, Oscillospira, Ruminococcaceae and Clostridiales, became less abundant in obese subjects. CONCLUSION: We contributed data from unstudied Colombians that showed that the geographic origin of the studied population had a greater impact on the composition of the gut microbiota than BMI or gender. Any strategy aiming to modulate or control obesity via manipulation of this bacterial community should consider this effect.
Asunto(s)
Bacterias/clasificación , Tracto Gastrointestinal/microbiología , Microbiota , Adulto , Anciano , Bacterias/genética , Análisis por Conglomerados , Colombia , Estudios Transversales , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Adulto JovenRESUMEN
Clostridia are abundant in the human gut and comprise families associated with host health such as Oscillospiraceae, which has been correlated with leanness. However, culturing bacteria within this family is challenging, leading to their detection primarily through 16S rRNA amplicon sequencing, which has a limited ability to unravel diversity at low taxonomic levels, or by shotgun metagenomics, which is hindered by its high costs and complexity. In this cross-sectional study involving 114 Colombian adults, we used an amplicon-based sequencing strategy with alternative markers-gyrase subunit B (gyrB) and DNA K chaperone heat protein 70 (dnaK)-that evolve faster than the 16S rRNA gene. Comparing the diversity and abundance observed with the three markers in our cohort, we found a reduction in the diversity of Clostridia, particularly within Lachnospiraceae and Oscillospiraceae among obese individuals [as measured by the body mass index (BMI)]. Within Lachnospiraceae, the diversity of Ruminococcus_A negatively correlated with BMI. Within Oscillospiraceae, the genera CAG-170 and Vescimonas also exhibited this negative correlation. In addition, the abundance of Vescimonas was negatively correlated with BMI. Leveraging shotgun metagenomic data, we conducted a phylogenetic and genomic characterization of 120 metagenome-assembled genomes from Vescimonas obtained from a larger sample of the same cohort. We identified 17 of the 72 reported species. The functional annotation of these genomes showed the presence of multiple carbohydrate-active enzymes, particularly glycosyl transferases and glycoside hydrolases, suggesting potential beneficial roles in fiber degradation, carbohydrate metabolism, and butyrate production. IMPORTANCE: The gut microbiota is diverse across various taxonomic levels. At the intra-species level, it comprises multiple strains, some of which may be host-specific. However, our understanding of fine-grained diversity has been hindered by the use of the conserved 16S rRNA gene. While shotgun metagenomics offers higher resolution, it remains costly, may fail to identify specific microbes in complex samples, and requires extensive computational resources and expertise. To address this, we employed a simple and cost-effective analysis of alternative genetic markers to explore diversity within Clostridia, a crucial group within the human gut microbiota whose diversity may be underestimated. We found high intra-species diversity for certain groups and associations with obesity. Notably, we identified Vescimonas, an understudied group. Making use of metagenomic data, we inferred functionality, uncovering potential beneficial roles in dietary fiber and carbohydrate degradation, as well as in short-chain fatty acid production.
Asunto(s)
Microbioma Gastrointestinal , Obesidad , Humanos , Microbioma Gastrointestinal/genética , Obesidad/microbiología , Masculino , Adulto , Femenino , Estudios Transversales , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Metagenómica/métodos , Índice de Masa CorporalRESUMEN
Obesity (OB) and cardiometabolic disease are major public health issues linked to changes in the gut microbiome. OB and poor cardiometabolic health status (CHS) are often comorbid, which hinders efforts to identify components of the microbiome uniquely linked to either one. Here, we used a deeply phenotyped cohort of 408 adults from Colombia, including subjects with OB, unhealthy CHS, or both, to validate previously reported features of gut microbiome function and diversity independently correlated with OB or CHS using fecal metagenomes. OB was defined by body mass index, waist circumference, and body fat; CHS as healthy or unhealthy according to blood biochemistry and anthropometric data. We found that OB, more so than metabolic status, drove associations with gut microbiome structure and functions. The microbiome of obese individuals with and without co-existing unhealthy CHS was characterized by reduced metagenomic diversity, reduced fermentative potential and elevated capacity to respond to oxidative stress and produce bacterial antigens. Disease-linked features were correlated with increased host blood pressure and inflammatory markers, and were mainly contributed by members of the family Enterobacteriaceae. Our results link OB with a microbiome able to tolerate an inflammatory and oxygenated gut state, and suggest that OB is the main driver of microbiome functional differences when poor CHS is a comorbidity.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Adulto , Humanos , Obesidad , Tejido Adiposo , AntropometríaRESUMEN
Ribosomal DNA (rDNA) is one of the most conserved genes in eukaryotes. The multiples copies of rDNA in the genome evolve in a concerted manner, through unequal crossing over and/or gene conversion, two mechanisms related to homologous recombination. Recombination increases local GC content in several organisms through a process known as GC-biased gene conversion (gBGC). gBGC has been well characterized in mammals, birds, and grasses, but its phylogenetic distribution across the tree of life is poorly understood. Here, we test the hypothesis that recombination affects the evolution of base composition in 18S rDNA and examine the reliability of this thoroughly studied molecule as a marker of gBGC in eukaryotes. Phylogenetic analyses of 18S rDNA in vertebrates and angiosperms reveal significant heterogeneity in the evolution of base composition across both groups. Mammals, birds, and grasses experience increases in the GC content of the 18S rDNA, consistent with previous genome-wide analyses. In addition, we observe increased GC contents in Ostariophysi ray-finned fishes and commelinid monocots (i.e., the clade including grasses), suggesting that the genomes of these two groups have been affected by gBGC. Polymorphism analyses in rDNA confirm that gBGC, not mutation bias, is the most plausible explanation for these patterns. We also find that helix and loop sites of the secondary structure of ribosomal RNA do not evolve at the same pace: loops evolve faster than helices, whereas helices are GC richer than loops. We extend analyses to major lineages of eukaryotes and suggest that gBGC might have also affected base composition in Giardia (Diplomonadina), nudibranch gastropods (Mollusca), and Asterozoa (Echinodermata).
Asunto(s)
Composición de Base/genética , ADN Ribosómico/genética , Conversión Génica , Tasa de Mutación , ARN Ribosómico 18S/genética , Animales , Magnoliopsida/genética , Conformación de Ácido Nucleico , Filogenia , Recombinación Genética/genética , Vertebrados/genéticaRESUMEN
Cardiometabolic disease risk factors, including obesity, insulin resistance, high blood pressure, and dyslipidemia, are associated with elevated oxidative stress biomarkers like oxylipins. Increased adiposity by itself induces various isomers of this oxidized lipid family, while dietary polyphenols show benefits in its regulation. Previously, we showed that specific co-abundant microorganisms characterized the gut microbiota of Colombians and associated differentially with diet, lifestyle, obesity, and cardiometabolic health status, which led us to hypothesize that urinary oxylipins would reflect the intensity of oxidative metabolism linked to gut microbiota dysbiosis. Thus, we selected a convenience sample of 105 participants (age: 40.2 ± 11.9 years, 47.6% women), grouped according to microbiota, cardiometabolic health status, and body mass index (BMI); and evaluated 33 urinary oxylipins by HPLC-QqQ-MS/MS (e.g., isoprostanes, prostaglandins, and metabolites), paired with anthropometry and blood chemistry information and dietary antioxidants estimated from a 24-h food recall. In general, oxylipins did not show differences among individuals who differed in gut microbiota. While the unmetabolized oxylipin levels were not associated with BMI, the total content of oxylipin metabolites was highest in obese and cardiometabolically abnormal subjects (e.g., insulin resistant), mainly by prostaglandin-D (2,3-dinor-11ß-PGF2α) and 15-F2t-IsoPs (2,3-dinor-15-F2t-IsoP and 2,3-dinor-15-epi-15-F2t-IsoP) metabolites. The total polyphenol intake in this cohort was 1070 ± 627 mg/day. After adjusting for body weight, the polyphenol intake was significantly higher in lean than overweight and showed an inverse association with dinor-oxylipin levels in principal component analysis. These results suggest that the 2,3-dinor-oxylipins could be more specific biomarkers associated with BMI than their parent oxylipins and that are sensitive to be regulated by dietary antioxidants.
Asunto(s)
Antioxidantes , Enfermedades Cardiovasculares , Adulto , Biomarcadores , F2-Isoprostanos/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad/metabolismo , Sobrepeso , Oxilipinas , Polifenoles , Espectrometría de Masas en TándemRESUMEN
Golden berry (Physalis peruviana) is a tropical fruit rich in antioxidants that has been proposed to be able to control the lipid profile in hypercholesterolemic patients. Dyslipidemia is an independent risk factor for cardiometabolic diseases. The gut microbiota is strongly associated with cardiometabolic risk and is involved in redox balance, intestinal permeability, and inflammation. However, the impacts of golden berry on some of these factors, including the human gut microbiota, have never been tested, and there are no tools for compliance monitoring or dietary intake assessment regarding nutritional interventions with this fruit. In the pre-post quasi-experimental nutritional intervention presented here, 18 adult men (27-49 years old) consumed golden berries (Dorada variety) for three weeks. We evaluated putative biomarkers of exposure through an untargeted metabolomics approach (liquid chromatography-mass spectrometry LC-MS), quantified the biomarkers of oxidative stress, gut permeability, and inflammation in plasma, and assessed the effects of fruit intake on the gut microbiota through 16S rRNA gene sequencing of feces (Illumina MiSeq V2). First, syringic acid and kaempferol were identified as putative biomarkers of golden berry consumption. Intervention with this fruit promoted physiological changes in the participants after three weeks, reducing the level of the oxidative stress marker 8-isoprostane (-148 pg/ml; 36.1 %; p = 0.057) and slightly altering gut permeability by increasing the plasma levels of LBP (2.91 µg/ml; 54.6 %; p = 0.0005) and I-FABP (0.15, 14.7 %, p = 0.04) without inducing significant inflammation; i.e., the levels of IL-1ß, TNF-α and IL-8 changed by 0.7 (2.0 %), -4.0 (-9.6 %) and -0.4 (-1.8 %) pg/ml, respectively. Notably, the consumption of golden berries did not affect the gut microbiota of the individuals consistently but instead shifted it in a personalized manner. The compositions of the gut microbiota of a given individual at the end of intervention and one month after the end of intervention were statistically more similar to their own baseline than to a corresponding sample from a different individual. This intervention identified putative biomarkers of golden berry intake along with potential benefits of its consumption relevant to cardiometabolic disease risk reduction. Golden berries are likely to positively modulate redox balance, although this effect must be proven in a future controlled clinical trial.
Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Physalis , Adulto , Masculino , Humanos , Persona de Mediana Edad , Frutas , ARN Ribosómico 16S , Permeabilidad , Inflamación , Biomarcadores , Estrés OxidativoRESUMEN
BACKGROUND: Introgressive events (e.g., hybridization, gene flow, horizontal gene transfer) and incomplete lineage sorting of ancestral polymorphisms are a challenge for phylogenetic analyses since different genes may exhibit conflicting genealogical histories. Grasses of the Triticeae tribe provide a particularly striking example of incongruence among gene trees. Previous phylogenies, mostly inferred with one gene, are in conflict for several taxon positions. Therefore, obtaining a resolved picture of relationships among genera and species of this tribe has been a challenging task. Here, we obtain the most comprehensive molecular dataset to date in Triticeae, including one chloroplastic and 26 nuclear genes. We aim to test whether it is possible to infer phylogenetic relationships in the face of (potentially) large-scale introgressive events and/or incomplete lineage sorting; to identify parts of the evolutionary history that have not evolved in a tree-like manner; and to decipher the biological causes of gene-tree conflicts in this tribe. RESULTS: We obtain resolved phylogenetic hypotheses using the supermatrix and Bayesian Concordance Factors (BCF) approaches despite numerous incongruences among gene trees. These phylogenies suggest the existence of 4-5 major clades within Triticeae, with Psathyrostachys and Hordeum being the deepest genera. In addition, we construct a multigenic network that highlights parts of the Triticeae history that have not evolved in a tree-like manner. Dasypyrum, Heteranthelium and genera of clade V, grouping Secale, Taeniatherum, Triticum and Aegilops, have evolved in a reticulated manner. Their relationships are thus better represented by the multigenic network than by the supermatrix or BCF trees. Noteworthy, we demonstrate that gene-tree incongruences increase with genetic distance and are greater in telomeric than centromeric genes. Together, our results suggest that recombination is the main factor decoupling gene trees from multigenic trees. CONCLUSIONS: Our study is the first to propose a comprehensive, multigenic phylogeny of Triticeae. It clarifies several aspects of the relationships among genera and species of this tribe, and pinpoints biological groups with likely reticulate evolution. Importantly, this study extends previous results obtained in Drosophila by demonstrating that recombination can exacerbate gene-tree conflicts in phylogenetic reconstructions.
Asunto(s)
Filogenia , Poaceae/genética , Teorema de Bayes , Cloroplastos/genética , Genes de Plantas , Recombinación GenéticaRESUMEN
Senescence, the decline in fitness components of an organism with age [1], is a nearly universal characteristic of living beings [2-6]. This ubiquity is challenging because natural selection does not favor the evolution of traits decreasing fitness [1, 7, 8]. Senescence may result from two nonexclusive mechanisms: the accumulation of deleterious mutations acting late in life, when the strength of natural selection against them declines [9-11] (mutation accumulation or MA hypothesis [12]) and the delayed cost of genes having beneficial effects early in life (antagonistic pleiotropy or AP hypothesis [13]). Few empirical studies have evaluated their contribution to the standing genetic variation in senescence. These studies focused on Drosophila and may be compromised by recent laboratory adaptation [14]. We here study genetic variation in aging patterns in snails (Physa acuta) freshly sampled in natural populations. Our results strongly support the MA theory by validating all its classical predictions, confirming previous results in Drosophila. We also report a striking, novel finding: interbreeding between natural populations alleviates the decline in survival with age. We provide new theoretical models showing this to be another consequence of MA. Our results offer interesting perspectives on how different populations may follow different genetic pathways to evolve senescence.
Asunto(s)
Envejecimiento/genética , Animales no Consanguíneos/fisiología , Trastornos del Desarrollo Sexual , Mutación , Caracoles/genética , Caracoles/fisiología , Animales , Modelos GenéticosRESUMEN
The bacterial microbiota of the mosquito influences numerous physiological processes of the host. As low-microbial-biomass ecosystems, mosquito tissues are prone to contamination from the laboratory environment and from reagents commonly used to isolate DNA from tissue samples. In this report, we analyzed nine 16S rRNA data sets, including new data obtained by us, to gain insight into the impact of potential contaminating sequences on the composition, diversity, and structure of the mosquito tissue microbial community. Using a clustering-free approach based on the relative abundance of amplicon sequence variants (ASVs) in tissue samples and negative controls, we identified candidate contaminating sequences that sometimes differed from, but were consistent with, results found using established methodologies. Some putative contaminating sequences belong to bacterial taxa previously identified as contaminants that are commonly found in metagenomic studies but that have also been identified as part of the mosquito core microbiota, with putative physiological relevance for the host. Using different relative abundance cutoffs, we show that contaminating sequences have a significant impact on tissue microbiota diversity and structure analysis. IMPORTANCE The study of tissue-associated microbiota from mosquitoes (primarily from the gut) has grown significantly in the last several years. Mosquito tissue samples represent a challenge for researchers given their low microbial biomass and similar taxonomic composition commonly found in the laboratory environment and in molecular reagents. Using new and published data sets that identified mosquito tissue microbiota from gut and reproductive tract tissues (and their respective negative controls), we developed a simple method to identify contamination microbiota. This approach uses an initial taxonomic identification without operational taxonomic unit (OTU) clustering and evaluates the relative abundance of control sample sequences, allowing the identification and removal of purported contaminating sequences in data sets obtained from low-microbial-biomass samples. While it was exemplified with the analysis of tissue microbiota from mosquitos, it can be extended to other data sets dealing with similar technical artifacts.
RESUMEN
The particularly interdisciplinary nature of human microbiome research makes the organization and reporting of results spanning epidemiology, biology, bioinformatics, translational medicine and statistics a challenge. Commonly used reporting guidelines for observational or genetic epidemiology studies lack key features specific to microbiome studies. Therefore, a multidisciplinary group of microbiome epidemiology researchers adapted guidelines for observational and genetic studies to culture-independent human microbiome studies, and also developed new reporting elements for laboratory, bioinformatics and statistical analyses tailored to microbiome studies. The resulting tool, called 'Strengthening The Organization and Reporting of Microbiome Studies' (STORMS), is composed of a 17-item checklist organized into six sections that correspond to the typical sections of a scientific publication, presented as an editable table for inclusion in supplementary materials. The STORMS checklist provides guidance for concise and complete reporting of microbiome studies that will facilitate manuscript preparation, peer review, and reader comprehension of publications and comparative analysis of published results.
Asunto(s)
Biología Computacional/métodos , Disbiosis/microbiología , Microbiota/fisiología , Estudios Observacionales como Asunto/métodos , Proyectos de Investigación , Humanos , Ciencia Traslacional BiomédicaRESUMEN
BACKGROUND: Lymnaeidae snails play a prominent role in the transmission of helminths, mainly trematodes of medical and veterinary importance (e.g., Fasciola liver flukes). As this family exhibits a great diversity in shell morphology but extremely homogeneous anatomical traits, the systematics of Lymnaeidae has long been controversial. Using the most complete dataset to date, we examined phylogenetic relationships among 50 taxa of this family using a supermatrix approach (concatenation of the 16 S, ITS-1 and ITS-2 genes, representing 5054 base pairs) involving both Maximum Likelihood and Bayesian Inference. RESULTS: Our phylogenetic analysis demonstrates the existence of three deep clades of Lymnaeidae representing the main geographic origin of species (America, Eurasia and the Indo-Pacific region). This phylogeny allowed us to discuss on potential biological invasions and map important characters, such as, the susceptibility to infection by Fasciola hepatica and F. gigantica, and the haploid number of chromosomes (n). We found that intermediate hosts of F. gigantica cluster within one deep clade, while intermediate hosts of F. hepatica are widely spread across the phylogeny. In addition, chromosome number seems to have evolved from n = 18 to n = 17 and n = 16. CONCLUSION: Our study contributes to deepen our understanding of Lymnaeidae phylogeny by both sampling at worldwide scale and combining information from various genes (supermatrix approach). This phylogeny provides insights into the evolutionary relationships among genera and species and demonstrates that the nomenclature of most genera in the Lymnaeidae does not reflect evolutionary relationships. This study highlights the importance of performing basic studies in systematics to guide epidemiological control programs.
Asunto(s)
Evolución Biológica , Filogenia , Caracoles/genética , Animales , Teorema de Bayes , Núcleo Celular/genética , ADN Mitocondrial/genética , ADN Espaciador Ribosómico/genética , Vectores de Enfermedades/clasificación , Fasciola/patogenicidad , Funciones de Verosimilitud , Alineación de Secuencia , Análisis de Secuencia de ADN , Caracoles/clasificación , Caracoles/parasitologíaRESUMEN
Diet plays an important role in shaping gut microbiota. However, much remains to be learned regarding this association. We analyzed dietary intake and gut microbiota in a community-dwelling cohort of 441 Colombians. Diet quality, intake of food groups and nutrient consumption were paired with microbial diversity and composition using linear regressions, Procrustes analyses and a random-forest machine-learning algorithm. Analyses were adjusted for potential confounders, including the five cities from where the participants originated, sex (male, female), age group (18-40 and 41-62 years), BMI (lean, overweight, obese) and socioeconomic status. Microbial diversity was higher in individuals with increased intake of nutrients obtained from plant-food sources, whereas the intake of food groups and nutrients correlated with microbiota structure. Random-forest regressions identified microbial communities associated with different diet components. Two remarkable results confirmed previous expectations regarding the link between diet and microbiota: communities composed of short-chain fatty acid (SCFA) producers were more prevalent in the microbiota of individuals consuming diets rich in fiber and plant-food sources, such as fruits, vegetables and beans. In contrast, an inflammatory microbiota composed of bile-tolerant and putrefactive microorganisms along with opportunistic pathogens thrived in individuals consuming diets enriched in animal-food sources and of low quality, i.e., enriched in ultraprocessed foods and depleted in dietary fiber. This study expands our understanding of the relationship between dietary intake and gut microbiota. We provide evidence that diet is strongly associated with the gut microbial community and highlight generalizable connections between them.
Asunto(s)
Dieta , Calidad de los Alimentos , Microbioma Gastrointestinal , Nutrientes , Adolescente , Adulto , Animales , Fibras de la Dieta , Ácidos Grasos Volátiles , Femenino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Persona de Mediana Edad , Obesidad , Sobrepeso , ARN Ribosómico 16S/análisis , Verduras , Adulto JovenRESUMEN
Identifying the genetic and non-genetic determinants of obesity and related cardiometabolic dysfunctions is cornerstone for their prevention, treatment, and control. While genetic variants contribute to the cardiometabolic syndrome (CMS), non-genetic factors, such as the gut microbiota, also play key roles. Gut microbiota is intimately associated with CMS and its composition is heritable. However, associations between this microbial community and host genetics are understudied. We contribute filling this gap by genotyping 60 variants in 39 genes of three modules involved in CMS risk, measuring cardiometabolic risk factors, and characterizing gut microbiota in a cohort of 441 Colombians. We hypothesized that CMS risk variants were correlated with detrimental levels of clinical parameters and with the abundance of disease-associated microbes. We found several polymorphisms in genes of innate immunity, appetite control, and energy metabolism that were associated with metabolic dysregulation and microbiota composition; the associations between host genetics and cardiometabolic health were independent of the participants' gut microbiota, and those between polymorphisms and gut microbes were independent of the CMS risk. Associations were also independent of the host genetic ancestry, diet and lifestyle. Most microbes explaining genetic-microbiota associations belonged to the families Lachnospiraceae and Ruminococcaceae. Multiple CMS risk alleles were correlated with increased abundance of beneficial microbiota, suggesting that the phenotypic outcome of the evaluated variants might depend upon the genetic background of the studied population and its environmental context. Our results provide additional evidence that the gut microbiota is under the host genetic control and present pathways of host-microbe interactions.
Asunto(s)
Regulación del Apetito/genética , Metabolismo Energético/genética , Microbioma Gastrointestinal , Inmunidad Innata/genética , Síndrome Metabólico/genética , Síndrome Metabólico/microbiología , Adulto , Índice de Masa Corporal , Estudios de Cohortes , Estudios Transversales , Femenino , Interacción Gen-Ambiente , Genotipo , Interacciones Microbiota-Huesped , Humanos , Masculino , Persona de Mediana Edad , Obesidad/etiología , Polimorfismo Genético , ARN Ribosómico 16S/genética , Factores de RiesgoRESUMEN
Cardiometabolic affections greatly contribute to the global burden of disease. The susceptibility to obesity, cardiovascular disease, and type-2 diabetes, conditions that add to the cardiometabolic syndrome (CMS), was associated with the ancestral genetic composition and gut microbiota. Studies explicitly testing associations between genetic ancestry and gut microbes are growing. We here examined whether the host genetic ancestry was associated with gut microbiota composition, and distinguished the effects of genetic ancestry and non-genetic factors on human cardiometabolic health. We performed a cross-sectional study with 441 community-dwelling Colombian mestizos from five cities spanning the Andes, Pacific, and Caribbean coasts. We characterized the host genetic ancestry by genotyping 40 ancestry informative markers; characterized gut microbiota through 16S rRNA gene sequencing; assessed diet intake, physical activity, cigarette, and medicament consumption; and measured cardiometabolic outcomes that allowed calculating a CMS risk scale. On average, each individual of our cohort was 67 ± 6% European, 21 ± 5% Native American and 12 ± 5% African. Multivariable-adjusted generalized linear models showed that individuals with higher Native American and African ancestries had increased fasting insulin, body mass index and CMS risk, as assessed by the CMS risk scale. Furthermore, we identified 21 OTUs associated to the host genetic ancestry and 20 to cardiometabolic health. While we highlight novel associations between genetic ancestry and gut microbiota, we found that the effect of intestinal microbes was more likely to explain the variance in CMS risk scale than the contributions of European, Native American and African genetic backgrounds.
Asunto(s)
Enfermedades Cardiovasculares/genética , Microbioma Gastrointestinal , Predisposición Genética a la Enfermedad/genética , Factores de Riesgo , Adulto , Negro o Afroamericano/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/microbiología , Estudios de Cohortes , Estudios Transversales , Dieta , Femenino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Humanos , Indígenas Sudamericanos/genética , Estilo de Vida , Masculino , Metagenómica , Persona de Mediana Edad , ARN Ribosómico 16S , Población Blanca/genética , Adulto JovenRESUMEN
Gut microbial diversity changes throughout the human life span and is known to be associated with host sex. We investigated the association of age, sex, and gut bacterial alpha diversity in three large cohorts of adults from four geographical regions: subjects from the United States and United Kingdom in the American Gut Project (AGP) citizen-science initiative and two independent cohorts of Colombians and Chinese. In three of the four cohorts, we observed a strong positive association between age and alpha diversity in young adults that plateaued after age 40 years. We also found sex-dependent differences that were more pronounced in younger adults than in middle-aged adults, with women having higher alpha diversity than men. In contrast to the other three cohorts, no association of alpha diversity with age or sex was observed in the Chinese cohort. The association of alpha diversity with age and sex remained after adjusting for cardiometabolic parameters in the Colombian cohort and antibiotic usage in the AGP cohort. We further attempted to predict the microbiota age in individuals using a machine-learning approach for the men and women in each cohort. Consistent with our alpha-diversity-based findings, U.S. and U.K. women had a significantly higher predicted microbiota age than men, with a reduced difference being seen above age 40 years. This difference was not observed in the Colombian cohort and was observed only in middle-aged Chinese adults. Together, our results provide new insights into the influence of age and sex on the biodiversity of the human gut microbiota during adulthood while highlighting similarities and differences across diverse cohorts. IMPORTANCE Microorganisms in the human gut play a role in health and disease, and in adults higher gut biodiversity has been linked to better health. Since gut microorganisms may be pivotal in the development of microbial therapies, understanding the factors that shape gut biodiversity is of utmost interest. We performed large-scale analyses of the relationship of age and sex to gut bacterial diversity in adult cohorts from four geographic regions: the United States, the United Kingdom, Colombia, and China. In the U.S., U.K., and Colombian cohorts, bacterial biodiversity correlated positively with age in young adults but plateaued at about age 40 years, with no positive association being found in middle-aged adults. Young, but not middle-aged, adult women had higher gut bacterial diversity than men, a pattern confirmed via supervised machine learning. Interestingly, in the Chinese cohort, minimal associations were observed between gut biodiversity and age or sex. Our results highlight the patterns of adult gut biodiversity and provide a framework for future research.
RESUMEN
Chlorogenic acids (CGA) are the most abundant phenolic compounds in green coffee beans and in the human diet and have been suggested to mitigate several cardiometabolic risk factors. Here, we aimed to evaluate the effect of a water-based standardized green coffee extract (GCE) on cardiometabolic parameters in ApoE-/- mice and to explore the potential underlying mechanisms. Mice were fed an atherogenic diet without (vehicle) or with GCE by gavage (equivalent to 220 mg/kg of CGA) for 14 weeks. We assessed several metabolic, pathological, and inflammatory parameters and inferred gut microbiota composition, diversity, and functional potential. Although GCE did not reduce atherosclerotic lesion progression or plasma lipid levels, it induced important favorable changes. Specifically, improved metabolic parameters, including fasting glucose, insulin resistance, serum leptin, urinary catecholamines, and liver triglycerides, were observed. These changes were accompanied by reduced weight gain, decreased adiposity, lower inflammatory infiltrate in adipose tissue, and protection against liver damage. Interestingly, GCE also modulated hepatic IL-6 and total serum IgM and induced shifts in gut microbiota. Altogether, our results reveal the cooccurrence of these beneficial cardiometabolic effects in response to GCE in the same experimental model and suggest potential mediators and pathways involved.
Asunto(s)
Apolipoproteínas E/metabolismo , Coffea/química , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/microbiología , Animales , Apolipoproteínas E/genética , Aterosclerosis , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Resistencia a la Insulina , Hígado/efectos de los fármacos , Hígado/microbiología , Cirrosis Hepática/prevención & control , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Extractos Vegetales/químicaRESUMEN
Fiber fermentation by gut microbiota yields short-chain fatty acids (SCFAs) that are either absorbed by the gut or excreted in feces. Studies are conflicting as to whether SCFAs are beneficial or detrimental to cardiometabolic health, and how gut microbiota associated with SCFAs is unclear. In this study of 441 community-dwelling adults, we examined associations of fecal SCFAs, gut microbiota diversity and composition, gut permeability, and cardiometabolic outcomes, including obesity and hypertension. We assessed fecal microbiota by 16S rRNA gene sequencing, and SCFA concentrations by gas chromatography/mass spectrometry. Fecal SCFA concentrations were inversely associated with microbiota diversity, and 70 unique microbial taxa were differentially associated with at least one SCFA (acetate, butyrate or propionate). Higher SCFA concentrations were associated with a measure of gut permeability, markers of metabolic dysregulation, obesity and hypertension. Microbial diversity showed association with these outcomes in the opposite direction. Associations were significant after adjusting for measured confounders. In conclusion, higher SCFA excretion was associated with evidence of gut dysbiosis, gut permeability, excess adiposity, and cardiometabolic risk factors. Studies assessing both fecal and circulating SCFAs are needed to test the hypothesis that the association of higher fecal SCFAs with obesity and cardiometabolic dysregulation is due to less efficient SCFA absorption.