Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(9): 105166, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37595870

RESUMEN

Protein quality control (PQC) mechanisms are essential for degradation of misfolded or dysfunctional proteins. An essential part of protein homeostasis is recognition of defective proteins by PQC components and their elimination by the ubiquitin-proteasome system, often concentrating on protein termini as indicators of protein integrity. Changes in amino acid composition of C-terminal ends arise through protein disintegration, alternative splicing, or during the translation step of protein synthesis from premature termination or translational stop-codon read-through. We characterized reporter protein stability using light-controlled exposure of the random C-terminal peptide collection (CtPC) in budding yeast revealing stabilizing and destabilizing features of amino acids at positions -5 to -1 of the C terminus. The (de)stabilization properties of CtPC-degrons depend on amino acid identity, position, as well as composition of the C-terminal sequence and are transferable. Evolutionary pressure toward stable proteins in yeast is evidenced by amino acid residues under-represented in cytosolic and nuclear proteins at corresponding C-terminal positions, but over-represented in unstable CtPC-degrons, and vice versa. Furthermore, analysis of translational stop-codon read-through peptides suggested that such extended proteins have destabilizing C termini. PQC pathways targeting CtPC-degrons involved the ubiquitin-protein ligase Doa10 and the cullin-RING E3 ligase SCFDas1 (Skp1-Cullin-F-box protein). Overall, our data suggest a proteome protection mechanism that targets proteins with unnatural C termini by recognizing a surprisingly large number of C-terminal sequence variants.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis , Péptidos/genética , Péptidos/metabolismo , Proteínas Cullin/metabolismo , Aminoácidos/metabolismo , Codón/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo
2.
J Am Chem Soc ; 146(21): 14468-14478, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38757172

RESUMEN

Many biological mechanisms rely on the precise control of conformational changes in proteins. Understanding such dynamic processes requires methods for determining structures and their temporal evolution. In this study, we introduce a novel approach to time-resolved ion mobility mass spectrometry. We validated the method on a simple photoreceptor model and applied it to a more complex system, the animal-like cryptochrome from Chlamydomonas reinhardtii (CraCRY), to determine the role of specific amino acids affecting the conformational dynamics as reaction to blue light activation. In our setup, using a high-power LED mounted in the source region of an ion mobility mass spectrometer, we allow a time-resolved evaluation of mass and ion mobility spectra. Cryptochromes like CraCRY are a widespread type of blue light photoreceptors and mediate various light-triggered biological functions upon excitation of their inbuilt flavin chromophore. Another hallmark of cryptochromes is their flexible carboxy-terminal extension (CTE), whose structure and function as well as the details of its interaction with the photolyase homology region are not yet fully understood and differ among different cryptochromes types. Here, we addressed the highly conserved C-terminal domain of CraCRY, to study the effects of single mutations on the structural transition of the C-terminal helix α22 and the attached CTE upon lit-state formation. We show that D321, the putative proton acceptor of the terminal proton-coupled electron transfer event from Y373, is essential for triggering the large-scale conformational changes of helix α22 and the CTE in the lit state, while D323 influences the timing.


Asunto(s)
Chlamydomonas reinhardtii , Criptocromos , Conformación Proteica , Criptocromos/química , Criptocromos/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Espectrometría de Masas/métodos , Espectrometría de Movilidad Iónica/métodos , Modelos Moleculares
3.
PLoS Pathog ; 17(12): e1009980, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34962966

RESUMEN

Candida glabrata is an opportunistic pathogenic yeast frequently causing infections in humans. Though it lacks typical virulence factors such as hyphal development, C. glabrata contains a remarkably large and diverse set of putative wall adhesins that is crucial for its success as pathogen. Here, we present an analysis of putative adhesins from the homology clusters V and VI. First, sequence similarity network analysis revealed relationships between cluster V and VI adhesins and S. cerevisiae haze protective factors (Hpf). Crystal structures of A-regions from cluster VI adhesins Awp1 and Awp3b reveal a parallel right-handed ß-helix domain that is linked to a C-terminal ß-sandwich. Structure solution of the A-region of Awp3b via single wavelength anomalous diffraction phasing revealed the largest known lanthanide cluster with 21 Gd3+ ions. Awp1-A and Awp3b-A show structural similarity to pectate lyases but binding to neither carbohydrates nor Ca2+ was observed. Phenotypic analysis of awp1Δ, awp3Δ, and awp1,3Δ double mutants did also not confirm their role as adhesins. In contrast, deletion mutants of the cluster V adhesin Awp2 in the hyperadhesive clinical isolate PEU382 demonstrated its importance for adhesion to polystyrene or glass, biofilm formation, cell aggregation and other cell surface-related phenotypes. Together with cluster III and VII adhesins our study shows that C. glabrata CBS138 can rely on a set of 42 Awp1-related adhesins with ß-helix/α-crystallin domain architecture for modifying the surface characteristics of its cell wall.


Asunto(s)
Candida glabrata/genética , Candidiasis/microbiología , Proteínas Fúngicas/química , Biopelículas/crecimiento & desarrollo , Candida glabrata/metabolismo , Candida glabrata/patogenicidad , Adhesión Celular , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Modelos Moleculares , Factores de Virulencia
4.
Metab Eng ; 79: 97-107, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37422133

RESUMEN

Dynamic metabolic engineering is a strategy to switch key metabolic pathways in microbial cell factories from biomass generation to accumulation of target products. Here, we demonstrate that optogenetic intervention in the cell cycle of budding yeast can be used to increase production of valuable chemicals, such as the terpenoid ß-carotene or the nucleoside analog cordycepin. We achieved optogenetic cell-cycle arrest in the G2/M phase by controlling activity of the ubiquitin-proteasome system hub Cdc48. To analyze the metabolic capacities in the cell cycle arrested yeast strain, we studied their proteomes by timsTOF mass spectrometry. This revealed widespread, but highly distinct abundance changes of metabolic key enzymes. Integration of the proteomics data in protein-constrained metabolic models demonstrated modulation of fluxes directly associated with terpenoid production as well as metabolic subsystems involved in protein biosynthesis, cell wall synthesis, and cofactor biosynthesis. These results demonstrate that optogenetically triggered cell cycle intervention is an option to increase the yields of compounds synthesized in a cellular factory by reallocation of metabolic resources.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ingeniería Metabólica , Optogenética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(36): 22061-22067, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32839341

RESUMEN

The correct distribution and trafficking of proteins are essential for all organisms. Eukaryotes evolved a sophisticated trafficking system which allows proteins to reach their destination within highly compartmentalized cells. One eukaryotic hallmark is the attachment of a glycosylphosphatidylinositol (GPI) anchor to C-terminal ω-peptides, which are used as a zip code to guide a subset of membrane-anchored proteins through the secretory pathway to the plasma membrane. In fungi, the final destination of many GPI-anchored proteins is their outermost compartment, the cell wall. Enzymes of the Dfg5 subfamily catalyze the essential transfer of GPI-anchored substrates from the plasma membrane to the cell wall and discriminate between plasma membrane-resident GPI-anchored proteins and those transferred to the cell wall (GPI-CWP). We solved the structure of Dfg5 from a filamentous fungus and used in crystallo glycan fragment screening to reassemble the GPI-core glycan in a U-shaped conformation within its binding pocket. The resulting model of the membrane-bound Dfg5•GPI-CWP complex is validated by molecular dynamics (MD) simulations and in vivo mutants in yeast. The latter show that impaired transfer of GPI-CWPs causes distorted cell-wall integrity as indicated by increased chitin levels. The structure of a Dfg5•ß1,3-glycoside complex predicts transfer of GPI-CWP toward the nonreducing ends of acceptor glycans in the cell wall. In addition to our molecular model for Dfg5-mediated transglycosylation, we provide a rationale for how GPI-CWPs are specifically sorted toward the cell wall by using GPI-core glycan modifications.


Asunto(s)
Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Glicoproteínas/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Pared Celular/química , Pared Celular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hongos/química , Hongos/clasificación , Hongos/genética , Glicoproteínas/química , Glicoproteínas/genética , Glicosilfosfatidilinositoles/química , Transporte de Proteínas
6.
J Biol Chem ; 297(1): 100820, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34029589

RESUMEN

CYTH proteins make up a large superfamily that is conserved in all three domains of life. These enzymes have a triphosphate tunnel metalloenzyme (TTM) fold, which typically results in phosphatase functions, e.g., RNA triphosphatase, inorganic polyphosphatase, or thiamine triphosphatase. Some CYTH orthologs cyclize nucleotide triphosphates to 3',5'-cyclic nucleotides. So far, archaeal CYTH proteins have been annotated as adenylyl cyclases, although experimental evidence to support these annotations is lacking. To address this gap, we characterized a CYTH ortholog, SaTTM, from the crenarchaeote Sulfolobus acidocaldarius. Our in silico studies derived ten major subclasses within the CYTH family implying a close relationship between these archaeal CYTH enzymes and class IV adenylyl cyclases. However, initial biochemical characterization reveals inability of SaTTM to produce any cyclic nucleotides. Instead, our structural and functional analyses show a classical TTM behavior, i.e., triphosphatase activity, where pyrophosphate causes product inhibition. The Ca2+-inhibited Michaelis complex indicates a two-metal-ion reaction mechanism analogous to other TTMs. Cocrystal structures of SaTTM further reveal conformational dynamics in SaTTM that suggest feedback inhibition in TTMs due to tunnel closure in the product state. These structural insights combined with further sequence similarity network-based in silico analyses provide a firm molecular basis for distinguishing CYTH orthologs with phosphatase activities from class IV adenylyl cyclases.


Asunto(s)
Archaea/enzimología , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Familia de Multigenes , Polifosfatos/metabolismo , Adenilil Ciclasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Biocatálisis , Iones , Modelos Moleculares , Multimerización de Proteína , Especificidad por Sustrato , Sulfolobus acidocaldarius/enzimología , Agua
7.
Nucleic Acids Res ; 48(22): 12845-12857, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33270891

RESUMEN

Photolyases are ubiquitously occurring flavoproteins for catalyzing photo repair of UV-induced DNA damages. All photolyases described so far have a bilobal architecture with a C-terminal domain comprising flavin adenine dinucleotide (FAD) as catalytic cofactor and an N-terminal domain capable of harboring an additional antenna chromophore. Using sequence-similarity network analysis we discovered a novel subgroup of the photolyase/cryptochrome superfamily (PCSf), the NewPHLs. NewPHL occur in bacteria and have an inverted topology with an N-terminal catalytic domain and a C-terminal domain for sealing the FAD binding site from solvent access. By characterizing two NewPHL we show a photochemistry characteristic of other PCSf members as well as light-dependent repair of CPD lesions. Given their common specificity towards single-stranded DNA many bacterial species use NewPHL as a substitute for DASH-type photolyases. Given their simplified architecture and function we suggest that NewPHL are close to the evolutionary origin of the PCSf.


Asunto(s)
Criptocromos/genética , ADN de Cadena Simple/genética , Desoxirribodipirimidina Fotoliasa/genética , Secuencia de Aminoácidos/genética , Dominio Catalítico/genética , Dominio Catalítico/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , ADN de Cadena Simple/efectos de la radiación , Desoxirribodipirimidina Fotoliasa/efectos de la radiación , Methylobacterium/genética , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/efectos de la radiación , Rhodobacteraceae/genética , Rayos Ultravioleta
8.
J Biol Chem ; 295(35): 12512-12524, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32669365

RESUMEN

For host-cell interaction, the human fungal pathogen Candida glabrata harbors a large family of more than 20 cell wall-attached epithelial adhesins (Epas). Epa family members are lectins with binding pockets containing several conserved and variable structural hot spots, which were implicated in mediating functional diversity. In this study, we have performed an elaborate structure-based mutational analysis of numerous Epa paralogs to generally determine the role of diverse structural hot spots in conferring host cell binding and ligand binding specificity. Our study reveals that several conserved structural motifs contribute to efficient host cell binding. Moreover, our directed motif exchange experiments reveal that the variable loop CBL2 is key for programming ligand binding specificity, albeit with limited predictability. In contrast, we find that the variable loop L1 affects host cell binding without significantly influencing the specificity of ligand binding. Our data strongly suggest that variation of numerous structural hot spots in the ligand binding pocket of Epa proteins is a main driver of their functional diversification and evolution.


Asunto(s)
Candida glabrata , Proteínas Fúngicas , Lectinas , Secuencias de Aminoácidos , Células CACO-2 , Candida glabrata/química , Candida glabrata/genética , Candida glabrata/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Dominios Proteicos
9.
Photochem Photobiol Sci ; 20(6): 733-746, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33977513

RESUMEN

NewPHL is a recently discovered subgroup of ancestral DNA photolyases. Its domain architecture displays pronounced differences from that of canonical photolyases, in particular at the level of the characteristic electron transfer chain, which is limited to merely two tryptophans, instead of the "classical" three or four. Using transient absorption spectroscopy, we show that the dynamics of photoreduction of the oxidized FAD cofactor in the NewPHL begins similarly as that in canonical photolyases, i.e., with a sub-ps primary reduction of the excited FAD cofactor by an adjacent tryptophan, followed by migration of the electron hole towards the second tryptophan in the tens of ps regime. However, the resulting tryptophanyl radical then undergoes an unprecedentedly fast deprotonation in less than 100 ps in the NewPHL. In spite of the stabilization effect of this deprotonation, almost complete charge recombination follows in two phases of ~ 950 ps and ~ 50 ns. Such a rapid recombination of the radical pair implies that the first FAD photoreduction step, i.e., conversion of the fully oxidized to the semi-quinone state, should be rather difficult in vivo. We hence suggest that the flavin chromophore likely switches only between its semi-reduced and fully reduced form in NewPHL under physiological conditions.


Asunto(s)
Desoxirribodipirimidina Fotoliasa/metabolismo , Termodinámica , Desoxirribodipirimidina Fotoliasa/química , Electrones , Flavinas/química , Flavinas/metabolismo , Oxidación-Reducción , Procesos Fotoquímicos , Triptófano/química , Triptófano/metabolismo
10.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34639031

RESUMEN

The family of phytochrome photoreceptors contains proteins with different domain architectures and spectral properties. Knotless phytochromes are one of the three main subgroups classified by their distinct lack of the PAS domain in their photosensory core module, which is in contrast to the canonical PAS-GAF-PHY array. Despite intensive research on the ultrafast photodynamics of phytochromes, little is known about the primary kinetics in knotless phytochromes. Here, we present the ultrafast Pr ⇆ Pfr photodynamics of SynCph2, the best-known knotless phytochrome. Our results show that the excited state lifetime of Pr* (~200 ps) is similar to bacteriophytochromes, but much longer than in most canonical phytochromes. We assign the slow Pr* kinetics to relaxation processes of the chromophore-binding pocket that controls the bilin chromophore's isomerization step. The Pfr photoconversion dynamics starts with a faster excited state relaxation than in canonical phytochromes, but, despite the differences in the respective domain architectures, proceeds via similar ground state intermediate steps up to Meta-F. Based on our observations, we propose that the kinetic features and overall dynamics of the ultrafast photoreaction are determined to a great extent by the geometrical context (i.e., available space and flexibility) within the binding pocket, while the general reaction steps following the photoexcitation are most likely conserved among the red/far-red phytochromes.


Asunto(s)
Procesos Fotoquímicos , Fitocromo/química , Fitocromo/metabolismo , Cinética , Luz , Modelos Moleculares , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Conformación Proteica , Análisis Espectral , Relación Estructura-Actividad
11.
J Biol Chem ; 294(18): 7460-7471, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30902813

RESUMEN

Phosphorylation-dependent interactions play crucial regulatory roles in all domains of life. Forkhead-associated (FHA) and von Willebrand type A (vWA) domains are involved in several phosphorylation-dependent processes of multiprotein complex assemblies. Although well-studied in eukaryotes and bacteria, the structural and functional contexts of these domains are not yet understood in Archaea. Here, we report the structural base for such an interacting pair of FHA and vWA domain-containing proteins, ArnA and ArnB, in the thermoacidophilic archaeon Sulfolobus acidocaldarius, where they act synergistically and negatively modulate motility. The structure of the FHA domain of ArnA at 1.75 Å resolution revealed that it belongs to the subclass of FHA domains, which recognizes double-pSer/pThr motifs. We also solved the 1.5 Å resolution crystal structure of the ArnB paralog vWA2, disclosing a complex topology comprising the vWA domain, a ß-sandwich fold, and a C-terminal helix bundle. We further show that ArnA binds to the C terminus of ArnB, which harbors all the phosphorylation sites identified to date and is important for the function of ArnB in archaellum regulation. We also observed that expression levels of the archaellum components in response to changes in nutrient conditions are independent of changes in ArnA and ArnB levels and that a strong interaction between ArnA and ArnB observed during growth on rich medium sequentially diminishes after nutrient limitation. In summary, our findings unravel the structural features in ArnA and ArnB important for their interaction and functional archaellum expression and reveal how nutrient conditions affect this interaction.


Asunto(s)
Proteínas Arqueales/metabolismo , Regulación de la Expresión Génica Arqueal , Genes Arqueales , Sulfolobus acidocaldarius/genética , Proteínas Arqueales/química , Proteínas Arqueales/genética , Cristalografía por Rayos X , Medios de Cultivo , Fosforilación , Conformación Proteica , Sulfolobus acidocaldarius/metabolismo
12.
Biol Chem ; 401(12): 1389-1405, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33035180

RESUMEN

Selective adhesion of fungal cells to one another and to foreign surfaces is fundamental for the development of multicellular growth forms and the successful colonization of substrates and host organisms. Accordingly, fungi possess diverse cell wall-associated adhesins, mostly large glycoproteins, which present N-terminal adhesion domains at the cell surface for ligand recognition and binding. In order to function as robust adhesins, these glycoproteins must be covalently linkedto the cell wall via C-terminal glycosylphosphatidylinositol (GPI) anchors by transglycosylation. In this review, we summarize the current knowledge on the structural and functional diversity of so far characterized protein families of adhesion domains and set it into a broad context by an in-depth bioinformatics analysis using sequence similarity networks. In addition, we discuss possible mechanisms for the membrane-to-cell wall transfer of fungal adhesins by membrane-anchored Dfg5 transglycosidases.


Asunto(s)
Glicosilfosfatidilinositoles/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adhesión Celular , Saccharomyces cerevisiae/citología
13.
Mol Cell ; 46(3): 245-59, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22483621

RESUMEN

Protein gradients play a central role in the spatial organization of cells, but the mechanisms of their formation are incompletely understood. This study analyzes the determinants responsible for establishing bipolar gradients of the ATPase MipZ, a key regulator of division site placement in Caulobacter crescentus. We have solved the crystal structure of MipZ in different nucleotide states, dissected its ATPase cycle, and investigated its interaction with FtsZ, ParB, and the nucleoid. Our results suggest that the polar ParB complexes locally stimulate the formation of ATP-bound MipZ dimers, which are then retained near the cell poles through association with chromosomal DNA. Due to their intrinsic ATPase activity, dimers eventually dissociate into freely diffusible monomers that undergo spontaneous nucleotide exchange and are recaptured by ParB. These findings clarify the molecular function of a conserved gradient-forming system and reveal mechanistic principles that might be commonly used to sustain protein gradients within cells.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Caulobacter crescentus/metabolismo , Dimerización , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/fisiología , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Sitios de Unión , Caulobacter crescentus/citología , División Celular , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Replicación del ADN , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia
14.
J Chem Phys ; 152(6): 065101, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32061221

RESUMEN

In an effort to elucidate the origin of avian magnetoreception, it was postulated that a radical-pair formed in a cryptochrome upon light activation provided the basis for the mechanism that enables an inclination compass sensitive to the geomagnetic field. Photoreduction in this case involves formation of a flavin adenine dinucleotide (FAD)-tryptophan (TRP) radical-pair, following electron transfer within a conserved TRP triad in the cryptochrome. Recently, an animal-like cryptochrome from Chlamydomonas reinhardtii (CraCRY) was analyzed, demonstrating the role of a fourth aromatic residue, which serves as a terminal electron donor in the photoreduction pathway, resulting in the creation of a more distal radical-pair and exhibiting fast electron transfer. In this work, we investigated the electron transfer in CraCRY with a combination of free energy molecular dynamics (MD) simulations, frozen density functional theory, and QM/MM MD simulations, supporting the suggestion of a proton coupled electron transfer mechanism. Spin dynamics simulations discerned details on the dependence of the singlet yield on the direction of the external magnetic field for the [FAD•- TYRH•+] and [FAD•- TYR•] radical-pairs in CraCRY, in comparison with the previously modeled [FAD•- TRPH•+] radical-pair.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Criptocromos/metabolismo , Teoría Funcional de la Densidad , Simulación de Dinámica Molecular , Termodinámica , Chlamydomonas reinhardtii/química , Criptocromos/química , Transporte de Electrón , Radicales Libres/química , Radicales Libres/metabolismo
15.
Nucleic Acids Res ; 46(15): 8010-8022, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30032195

RESUMEN

Photolyases and cryptochromes form an almost ubiquitous family of blue light photoreceptors involved in the repair and maintenance of DNA integrity or regulatory control. We found that one cryptochrome from the green alga Chlamydomonas reinhardtii (CraCRY) is capable of both, control of transcript levels and the sexual cycle of the alga in a positive (germination) and negative manner (mating ability), as well as catalyzing the repair of UV-DNA lesions. Its 1.6 Å crystal structure shows besides the FAD chromophore an aromatic tetrad that is indispensable in animal-like type I cryptochromes for light-driven change of their signaling-active redox state and formation of a stable radical pair. Given CraCRY's catalytic activity as (6-4) photolyase in vivo and in vitro, we present the first co-crystal structure of a cryptochrome with duplex DNA comprising a (6-4) pyrimidine-pyrimidone lesion. This 2.9 Å structure reveals a distinct conformation for the catalytic histidine His1, H357, that challenges previous models of a single-photon driven (6-4) photolyase mechanism.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Criptocromos/metabolismo , Reparación del ADN/fisiología , Desoxirribodipirimidina Fotoliasa/metabolismo , Conformación Molecular , Secuencia de Aminoácidos , Chlamydomonas reinhardtii/genética , Cristalografía por Rayos X , Modelos Moleculares , Oxidación-Reducción , Alineación de Secuencia , Transducción de Señal
16.
J Bacteriol ; 201(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31405915

RESUMEN

(R)-Benzylsuccinate is the characteristic initial intermediate of anaerobic toluene metabolism, which is formed by a radical-type addition of toluene to fumarate. Its further degradation proceeds by activation to the coenzyme A (CoA)-thioester and ß-oxidation involving a specific (R)-2-benzylsuccinyl-CoA dehydrogenase (BbsG) affiliated with the family of acyl-CoA dehydrogenases. In this report, we present the biochemical properties of electron transfer flavoproteins (ETFs) from the strictly anaerobic toluene-degrading species Geobacter metallireducens and Desulfobacula toluolica and the facultatively anaerobic bacterium Aromatoleum aromaticum We determined the X-ray structure of the ETF paralogue involved in toluene metabolism of G. metallireducens, revealing strong overall similarities to previously characterized ETF variants but significantly different structural properties in the hinge regions mediating conformational changes. We also show that all strictly anaerobic toluene degraders utilize one of multiple genome-encoded related ETF paralogues, which constitute a distinct clade of similar sequences in the ETF family, for ß-oxidation of benzylsuccinate. In contrast, facultatively anaerobic toluene degraders contain only one ETF species, which is utilized in all ß-oxidation pathways. Our phylogenetic analysis of the known sequences of the ETF family suggests that at least 36 different clades can be differentiated, which are defined either by the taxonomic group of the respective host species (e.g., clade P for Proteobacteria) or by functional specialization (e.g., clade T for anaerobic toluene degradation).IMPORTANCE This study documents the involvement of ETF in anaerobic toluene metabolism as the physiological electron acceptor for benzylsuccinyl-CoA dehydrogenase. While toluene-degrading denitrifying proteobacteria use a common ETF species, which is also used for other ß-oxidation pathways, obligately anaerobic sulfate- or ferric-iron-reducing bacteria use specialized ETF paralogues for toluene degradation. Based on the structure and sequence conservation of these ETFs, they form a new clade that is only remotely related to the previously characterized members of the ETF family. An exhaustive analysis of the available sequences indicated that the protein family consists of several closely related clades of proven or potential electron-bifurcating ETF species and many deeply branching nonbifurcating clades, which either follow the host phylogeny or are affiliated according to functional criteria.


Asunto(s)
Bacterias Anaerobias/metabolismo , Flavoproteínas Transportadoras de Electrones/metabolismo , Tolueno/metabolismo , Acil-CoA Deshidrogenasas/metabolismo , Anaerobiosis/fisiología , Deltaproteobacteria/metabolismo , Geobacter/metabolismo , Oxidación-Reducción , Filogenia , Rhodocyclaceae/metabolismo
17.
Plant J ; 96(6): 1255-1268, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30256472

RESUMEN

Phytochrome A (phyA) is a red and far-red (FR) sensing photoreceptor regulating plant growth and development. Its biologically active FR-absorbing form Pfr translocates into the nucleus and subsequently regulates gene expression. Two transport facilitators, FR elongated hypocotyl 1 (FHY1) and FHY1-like (FHL), are crucial for its cytoplasmic-nuclear translocation. FHY1 interacts preferentially with activated phyA (Pfr) in assays with recombinant phyA and FHY1 and in vivo. Nuclear translocation of the phyA-FHY1 complex depends on a nuclear localization signal (NLS) of FHY1, which is recognized by IMPαs independently of phyA. The complex is guided along the actin cytoskeleton. Additionally, FHY1 has the ability to exit the nucleus via the exportin route, thus is able to repeatedly transport phyA molecules to the nucleus, balancing the nucleo-cytoplasmic distribution. The direction of FHY1s transport appears to depend on its phosphorylation state in different compartments. Phosphorylated serins close to the NLS prevent FHY1 binding to IMPα. The work presented here elucidates key steps of the mechanism by which photoactivated phyA translocates to the nucleus.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Fitocromo A/metabolismo , Fitocromo/fisiología , Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Fitocromo/metabolismo
18.
J Am Chem Soc ; 141(34): 13394-13409, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31368699

RESUMEN

The animal-like cryptochrome of Chlamydomonas reinhardtii (CraCRY) is a recently discovered photoreceptor that controls the transcriptional profile and sexual life cycle of this alga by both blue and red light. CraCRY has the uncommon feature of efficient formation and longevity of the semireduced neutral form of its FAD cofactor upon blue light illumination. Tyrosine Y373 plays a crucial role by elongating , as fourth member, the electron transfer (ET) chain found in most other cryptochromes and DNA photolyases, which comprises a conserved tryptophan triad. Here, we report the full mechanism of light-induced FADH• formation in CraCRY using transient absorption spectroscopy from hundreds of femtoseconds to seconds. Electron transfer starts from ultrafast reduction of excited FAD to FAD•- by the proximal tryptophan (0.4 ps) and is followed by delocalized migration of the produced WH•+ radical along the tryptophan triad (∼4 and ∼50 ps). Oxidation of Y373 by coupled ET to WH•+ and deprotonation then proceeds in ∼800 ps, without any significant kinetic isotope effect, nor a pH effect between pH 6.5 and 9.0. The FAD•-/Y373• pair is formed with high quantum yield (∼60%); its intrinsic decay by recombination is slow (∼50 ms), favoring reduction of Y373• by extrinsic agents and protonation of FAD•- to form the long-lived, red-light absorbing FADH• species. Possible mechanisms of tyrosine oxidation by ultrafast proton-coupled ET in CraCRY, a process about 40 times faster than the archetypal tyrosine-Z oxidation in photosystem II, are discussed in detail.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Criptocromos/metabolismo , Proteínas de Plantas/metabolismo , Tirosina/metabolismo , Chlamydomonas reinhardtii/química , Criptocromos/química , Transporte de Electrón , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Luz , Modelos Moleculares , Oxidación-Reducción , Proteínas de Plantas/química , Protones , Tirosina/química
19.
Microbiology (Reading) ; 165(10): 1095-1106, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31339487

RESUMEN

Dodecins are small flavin-binding proteins that are widespread amongst haloarchaeal and bacterial species. Haloarchaeal dodecins predominantly bind riboflavin, while bacterial dodecins have been reported to bind riboflavin-5'-phosphate, also called flavin mononucleotide (FMN), and the FMN derivative, flavin adenine dinucleotide (FAD). Dodecins form dodecameric complexes and represent buffer systems for cytoplasmic flavins. In this study, dodecins of the bacteria Streptomyces davaonensis (SdDod) and Streptomyces coelicolor (ScDod) were investigated. Both dodecins showed an unprecedented low affinity for riboflavin, FMN and FAD when compared to other bacterial dodecins. Significant binding of FMN and FAD occurred at relatively low temperatures and under acidic conditions. X-ray diffraction analyses of SdDod and ScDod revealed that the structures of both Streptomyces dodecins are highly similar, which explains their similar binding properties for FMN and FAD. In contrast, SdDod and ScDod showed very different properties with regard to the stability of their dodecameric complexes. Site-directed mutagenesis experiments revealed that a specific salt bridge (D10-K62) is responsible for this difference in stability.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Transporte de Membrana/química , Streptomyces coelicolor/química , Streptomyces/química , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Multimerización de Proteína , Estabilidad Proteica , Riboflavina/análogos & derivados , Riboflavina/metabolismo , Especificidad de la Especie , Streptomyces/genética , Streptomyces coelicolor/genética , Temperatura
20.
Chembiochem ; 20(11): 1417-1429, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-30675988

RESUMEN

Life relies on a myriad of carefully orchestrated processes, in which proteins and their direct interplay ultimately determine cellular function and disease. Modulation of this complex crosstalk has recently attracted attention, even as a novel therapeutic strategy. Herein, we describe the synthesis and characterization of two visible-light-responsive peptide backbone photoswitches based on azobenzene derivatives, to exert optical control over protein-protein interactions (PPI). The novel peptidomimetics undergo fast and reversible isomerization with low photochemical fatigue under alternatively blue-/green-light irradiation cycles. Both bind in the nanomolar range to the protein of interest. Importantly, the best peptidomimetic displays a clear difference between isomers in its protein-binding capacity and, in turn, in its potential to inhibit enzymatic activity through PPI disruption. In addition, crystal structure determination, docking and molecular dynamics calculations allow a molecular interpretation and open up new avenues in the design and synthesis of future photoswitchable PPI modulators.


Asunto(s)
Compuestos Azo/química , Péptidos , Peptidomiméticos , Luz , Simulación de Dinámica Molecular , Péptidos/síntesis química , Péptidos/química , Peptidomiméticos/síntesis química , Peptidomiméticos/química , Procesos Fotoquímicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA