Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Biol Chem ; 295(14): 4748-4759, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32111740

RESUMEN

Microtubules are cytoskeletal structures critical for mitosis, cell motility, and protein and organelle transport and are a validated target for anticancer drugs. However, how tubulins are regulated and recruited to support these distinct cellular processes is incompletely understood. Posttranslational modifications of tubulins are proposed to regulate microtubule function and dynamics. Although many of these modifications have been investigated, only one prior study reports tubulin methylation and an enzyme responsible for this methylation. Here we used in vitro radiolabeling, MS, and immunoblotting approaches to monitor protein methylation and immunoprecipitation, immunofluorescence, and pulldown approaches to measure protein-protein interactions. We demonstrate that N-lysine methyltransferase 5A (KMT5A or SET8/PR-Set7), which methylates lysine 20 in histone H4, bound α-tubulin and methylated it at a specific lysine residue, Lys311 Furthermore, late SV40 factor (LSF)/CP2, a known transcription factor, bound both α-tubulin and SET8 and enhanced SET8-mediated α-tubulin methylation in vitro In addition, we found that the ability of LSF to facilitate this methylation is countered by factor quinolinone inhibitor 1 (FQI1), a specific small-molecule inhibitor of LSF. These findings suggest the general model that microtubule-associated proteins, including transcription factors, recruit or stimulate protein-modifying enzymes to target tubulins. Moreover, our results point to dual functions for SET8 and LSF not only in chromatin regulation but also in cytoskeletal modification.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Factores de Transcripción/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Células COS , Chlorocebus aethiops , Proteínas de Unión al ADN/genética , Células HEK293 , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Metilación , Unión Proteica , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Factores de Transcripción/genética
2.
Nucleic Acids Res ; 45(16): 9398-9412, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934503

RESUMEN

In mammals, faithful inheritance of genomic methylation patterns ensures proper gene regulation and cell behaviour, impacting normal development and fertility. Following establishment, genomic methylation patterns are transmitted through S-phase by the maintenance methyltransferase Dnmt1. Using a protein interaction screen, we identify Microprocessor component DROSHA as a novel DNMT1-interactor. Drosha-deficient embryonic stem (ES) cells display genomic hypomethylation that is not accounted for by changes in the levels of DNMT proteins. DNMT1-mediated methyltransferase activity is also reduced in these cells. We identify two transcripts that are specifically upregulated in Drosha- but not Dicer-deficient ES cells. Regions within these transcripts predicted to form stem-loop structures are processed by Microprocessor and can inhibit DNMT1-mediated methylation in vitro. Our results highlight DROSHA as a novel regulator of mammalian DNA methylation and we propose that DROSHA-mediated processing of RNA is necessary to ensure full DNMT1 activity. This adds to the DROSHA repertoire of non-miRNA dependent functions as well as implicating RNA in regulating DNMT1 activity and correct levels of genomic methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Ribonucleasa III/fisiología , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , Células Madre Embrionarias/enzimología , Células HEK293 , Humanos , Ratones , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Regulación hacia Arriba
3.
Nucleic Acids Res ; 44(4): 1642-56, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26553800

RESUMEN

Mammalian DNA (cytosine-5) methyltransferase 1 (DNMT1) is essential for maintenance methylation. Phosphorylation of Ser143 (pSer143) stabilizes DNMT1 during DNA replication. Here, we show 14-3-3 is a reader protein of DNMT1pSer143. In mammalian cells 14-3-3 colocalizes and binds DNMT1pSer143 post-DNA replication. The level of DNMT1pSer143 increased with overexpression of 14-3-3 and decreased by its depletion. Binding of 14-3-3 proteins with DNMT1pSer143 resulted in inhibition of DNA methylation activity in vitro. In addition, overexpression of 14-3-3 in NIH3T3 cells led to decrease in DNMT1 specific activity resulting in hypomethylation of the genome that was rescued by transfection of DNMT1. Genes representing cell migration, mobility, proliferation and focal adhesion pathway were hypomethylated and overexpressed. Furthermore, overexpression of 14-3-3 also resulted in enhanced cell invasion. Analysis of TCGA breast cancer patient data showed significant correlation for DNA hypomethylation and reduced patient survival with increased 14-3-3 expressions. Therefore, we suggest that 14-3-3 is a crucial reader of DNMT1pSer143 that regulates DNA methylation and altered gene expression that contributes to cell invasion.


Asunto(s)
Proteínas 14-3-3/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , Regulación de la Expresión Génica , Proteínas 14-3-3/metabolismo , Animales , Movimiento Celular/genética , Proliferación Celular/genética , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/biosíntesis , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Replicación del ADN/genética , Ratones , Células 3T3 NIH , Fosforilación
4.
Nucleic Acids Res ; 43(12): 6112-24, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-25990724

RESUMEN

Mammalian cells contain copious amounts of RNA including both coding and noncoding RNA (ncRNA). Generally the ncRNAs function to regulate gene expression at the transcriptional and post-transcriptional level. Among ncRNA, the long ncRNA and small ncRNA can affect histone modification, DNA methylation targeting and gene silencing. Here we show that endogenous DNA methyltransferase 1 (DNMT1) co-purifies with inhibitory ncRNAs. MicroRNAs (miRNAs) bind directly to DNMT1 with high affinity. The binding of miRNAs, such as miR-155-5p, leads to inhibition of DNMT1 enzyme activity. Exogenous miR-155-5p in cells induces aberrant DNA methylation of the genome, resulting in hypomethylation of low to moderately methylated regions. And small shift of hypermethylation of previously hypomethylated region was also observed. Furthermore, hypomethylation led to activation of genes. Based on these observations, overexpression of miR-155-5p resulted in aberrant DNA methylation by inhibiting DNMT1 activity, resulting in altered gene expression.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Metilación de ADN , MicroARNs/metabolismo , Línea Celular , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación de la Expresión Génica , Genoma Humano , Células HEK293 , Humanos
5.
Mol Cell ; 31(3): 347-59, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18691967

RESUMEN

Mediator occupies a central role in RNA polymerase II transcription as a sensor, integrator, and processor of regulatory signals that converge on protein-coding gene promoters. Compared to its role in gene activation, little is known regarding the molecular mechanisms and biological implications of Mediator as a transducer of repressive signals. Here we describe a protein interaction network required for extraneuronal gene silencing comprising Mediator, G9a histone methyltransferase, and the RE1 silencing transcription factor (REST; also known as neuron restrictive silencer factor, NRSF). We show that the MED12 interface in Mediator links REST with G9a-dependent histone H3K9 dimethylation to suppress neuronal genes in nonneuronal cells. Notably, missense mutations in MED12 causing the X-linked mental retardation (XLMR) disorders FG syndrome and Lujan syndrome disrupt its REST corepressor function. These findings implicate Mediator in epigenetic restriction of neuronal gene expression to the nervous system and suggest a pathologic basis for MED12-associated XLMR involving impaired REST-dependent neuronal gene regulation.


Asunto(s)
Silenciador del Gen , Discapacidad Intelectual Ligada al Cromosoma X/genética , Neuronas/metabolismo , Neuronas/patología , Receptores de Hormona Tiroidea/metabolismo , Células HeLa , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Complejo Mediador , Mutación Missense/genética , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Elementos Silenciadores Transcripcionales/genética
6.
J Biol Chem ; 289(12): 8277-87, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24492612

RESUMEN

Inheritance of DNA cytosine methylation pattern during successive cell division is mediated by maintenance DNA (cytosine-5) methyltransferase 1 (DNMT1). Lysine 142 of DNMT1 is methylated by the SET domain containing lysine methyltransferase 7 (SET7), leading to its degradation by proteasome. Here we show that PHD finger protein 20-like 1 (PHF20L1) regulates DNMT1 turnover in mammalian cells. Malignant brain tumor (MBT) domain of PHF20L1 binds to monomethylated lysine 142 on DNMT1 (DNMT1K142me1) and colocalizes at the perinucleolar space in a SET7-dependent manner. PHF20L1 knockdown by siRNA resulted in decreased amounts of DNMT1 on chromatin. Ubiquitination of DNMT1K142me1 was abolished by overexpression of PHF20L1, suggesting that its binding may block proteasomal degradation of DNMT1K142me1. Conversely, siRNA-mediated knockdown of PHF20L1 or incubation of a small molecule MBT domain binding inhibitor in cultured cells accelerated the proteasomal degradation of DNMT1. These results demonstrate that the MBT domain of PHF20L1 reads and controls enzyme levels of methylated DNMT1 in cells, thus representing a novel antagonist of DNMT1 degradation.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Lisina/análogos & derivados , Línea Celular , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN (Citosina-5-)-Metiltransferasa 1 , Metilación de ADN , Humanos , Mapas de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteolisis , Interferencia de ARN , Regulación hacia Arriba
8.
Epigenomes ; 8(1)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38390894

RESUMEN

While studying myoblast methylomes and transcriptomes, we found that CDH15 had a remarkable preference for expression in both myoblasts and cerebellum. To understand how widespread such a relationship was and its epigenetic and biological correlates, we systematically looked for genes with similar transcription profiles and analyzed their DNA methylation and chromatin state and accessibility profiles in many different cell populations. Twenty genes were expressed preferentially in myoblasts and cerebellum (Myob/Cbl genes). Some shared DNA hypo- or hypermethylated regions in myoblasts and cerebellum. Particularly striking was ZNF556, whose promoter is hypomethylated in expressing cells but highly methylated in the many cell populations that do not express the gene. In reporter gene assays, we demonstrated that its promoter's activity is methylation sensitive. The atypical epigenetics of ZNF556 may have originated from its promoter's hypomethylation and selective activation in sperm progenitors and oocytes. Five of the Myob/Cbl genes (KCNJ12, ST8SIA5, ZIC1, VAX2, and EN2) have much higher RNA levels in cerebellum than in myoblasts and displayed myoblast-specific hypermethylation upstream and/or downstream of their promoters that may downmodulate expression. Differential DNA methylation was associated with alternative promoter usage for Myob/Cbl genes MCF2L, DOK7, CNPY1, and ANK1. Myob/Cbl genes PAX3, LBX1, ZNF556, ZIC1, EN2, and VAX2 encode sequence-specific transcription factors, which likely help drive the myoblast and cerebellum specificity of other Myob/Cbl genes. This study extends our understanding of epigenetic/transcription associations related to differentiation and may help elucidate relationships between epigenetic signatures and muscular dystrophies or cerebellar-linked neuropathologies.

9.
Epigenomes ; 8(2)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38804369

RESUMEN

Nucleosomes are non-uniformly distributed across eukaryotic genomes, with stretches of 'open' chromatin strongly associated with transcriptionally active promoters and enhancers. Understanding chromatin accessibility patterns in normal tissue and how they are altered in pathologies can provide critical insights to development and disease. With the advent of high-throughput sequencing, a variety of strategies have been devised to identify open regions across the genome, including DNase-seq, MNase-seq, FAIRE-seq, ATAC-seq, and NicE-seq. However, the broad application of such methods to FFPE (formalin-fixed paraffin-embedded) tissues has been curtailed by the major technical challenges imposed by highly fixed and often damaged genomic material. Here, we review the most common approaches for mapping open chromatin regions, recent optimizations to overcome the challenges of working with FFPE tissue, and a brief overview of a typical data pipeline with analysis considerations.

10.
Methods Mol Biol ; 2611: 293-302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807075

RESUMEN

A novel genome-wide accessible chromatin visualization, quantitation, and sequencing method is described, which allows in situ fluorescence visualization and sequencing of the accessible chromatin in the mammalian cell. The cells are fixed by formaldehyde crosslinking, and processed using a modified nick translation method, where a nicking enzyme nicks one strand of DNA, and DNA polymerase incorporates biotin-conjugated dCTP, 5-methyl-dCTP, Fluorescein-12-dATP or Texas Red-5-dATP, dGTP, and dTTP. This allows accessible chromatin DNA to be labeled for visualization and on bead NGS library preparation. This technology allows cellular level chromatin accessibility quantification and genomic analysis of the epigenetic information in the chromatin, particularly accessible promoter, enhancers, nucleosome positioning, transcription factor occupancy, and other chromosomal protein binding.


Asunto(s)
Cromatina , ADN , Animales , ADN/genética , Genómica , Nucleosomas , ADN Polimerasa Dirigida por ADN/genética , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA