Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurosci ; 44(31)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38942472

RESUMEN

During navigation, the neocortex actively integrates learned spatial context with current sensory experience to guide behaviors. However, the relative encoding of spatial and sensorimotor information among cortical cells, and whether hippocampal feedback continues to modify these properties after learning, remains poorly understood. Thus, two-photon microscopy of male and female Thy1-GCaMP6s mice was used to longitudinally image neurons spanning superficial retrosplenial cortex and layers II-Va of primary and secondary motor cortices before and after bilateral dorsal hippocampal lesions. During behavior on a familiar cued treadmill, the locations of two obstacles were interchanged to decouple place-tuning from cue-tuning among position-correlated cells with fields at those locations. Subpopulations of place and cue cells each formed interareal gradients such that higher-level cortical regions exhibited higher fractions of place cells, whereas lower-level regions exhibited higher fractions of cue cells. Position-correlated cells in the motor cortex also formed translaminar gradients; more superficial cells were more likely to exhibit fields and were more sparsely and precisely tuned than deeper cells. After dorsal hippocampal lesions, a neural representation of the learned environment persisted, but retrosplenial cortex exhibited significantly increased cue-tuning, and, in motor cortices, both position-correlated cell recruitment and population activity at the unstable obstacle locations became more homogeneously elevated across laminae. Altogether, these results support that the hippocampus continues to modulate cortical responses in familiar environments, and the relative impact of descending feedback obeys hierarchical interareal and interlaminar gradients opposite to the flow of ascending sensory inputs.


Asunto(s)
Hipocampo , Neocórtex , Animales , Neocórtex/fisiopatología , Neocórtex/fisiología , Masculino , Hipocampo/fisiopatología , Hipocampo/fisiología , Hipocampo/patología , Ratones , Femenino , Señales (Psicología) , Ratones Endogámicos C57BL , Percepción Espacial/fisiología , Navegación Espacial/fisiología , Neuronas/fisiología , Ratones Transgénicos
2.
J Neurosci ; 41(2): 307-319, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33203745

RESUMEN

There has been considerable research showing populations of neurons encoding for different aspects of space in the brain. Recently, several studies using two-photon calcium imaging and virtual navigation have identified "spatially" modulated neurons in the posterior cortex. We enquire here whether the presence of such spatial representations may be a cortex-wide phenomenon and, if so, whether these representations can be organized in the absence of the hippocampus. To this end, we imaged the dorsal cortex of mice running on a treadmill populated with tactile cues. A high percentage (40-80%) of the detected neurons exhibited sparse, spatially localized activity, with activity fields uniformly localized over the track. The development of this location specificity was impaired by hippocampal damage. Thus, there is a substantial population of neurons distributed widely over the cortex that collectively form a continuous representation of the explored environment, and hippocampal outflow is necessary to organize this phenomenon.SIGNIFICANCE STATEMENT Increasing evidence points to the role of the neocortex in encoding spatial information. Whether this feature is linked to hippocampal functions is largely unknown. Here, we systematically surveyed multiple regions in the dorsal cortex of the same animal for the presence of signals encoding for spatial position. We described populations of cortical neurons expressing sequential patterns of activity localized in space in primary, secondary, and associational areas. Furthermore, we showed that the formation of these spatial representations was impacted by hippocampal lesion. Our results indicate that hippocampal inputs are necessary to maintain a precise cortical representation of space.


Asunto(s)
Hipocampo/fisiología , Neocórtex/fisiología , Percepción Espacial/fisiología , Algoritmos , Animales , Señales (Psicología) , Hipocampo/citología , Ratones , Ratones Transgénicos , Neocórtex/citología , Red Nerviosa/fisiología , Neuronas/fisiología , Desempeño Psicomotor/fisiología , Tacto
3.
Biol Psychiatry Glob Open Sci ; 4(1): 275-283, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38298796

RESUMEN

Background: The ability of psychedelic compounds to profoundly alter mental function has been long known, but the underlying changes in cellular-level information encoding remain poorly understood. Methods: We used two-photon microscopy to record from the retrosplenial cortex in head-fixed mice running on a treadmill before and after injection of the nonclassic psychedelic ibogaine (40 mg/kg intraperitoneally). Results: We found that the cognitive map, formed by the representation of position encoded by ensembles of individual neurons in the retrosplenial cortex, was destabilized by ibogaine when mice had to infer position between tactile landmarks. This corresponded with increased neural activity rates, loss of correlation structure, and increased responses to cues. Ibogaine had surprisingly little effect on the size-frequency distribution of network activity events, suggesting that signal propagation within the retrosplenial cortex was largely unaffected. Conclusions: Taken together, these data support proposals that compounds with psychedelic properties disrupt representations that are important for constraining neocortical activity, thereby increasing the entropy of neural signaling. Furthermore, the loss of expected position encoding between landmarks recapitulated effects of hippocampal impairment, suggesting that disruption of cognitive maps or other hippocampal processing may be a contributing mechanism of discoordinated neocortical activity in psychedelic states.

4.
DNA Cell Biol ; 43(2): 95-102, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38118108

RESUMEN

HeberNasvac, a therapeutic vaccine for chronic hepatitis B, is able to safely stimulate multiple Toll-like receptors, increasing antigen presentation in vitro and in a phase II clinical trial (Profira) in elderly volunteers who were household contacts of respiratory infection patients. Thus, a new indication as a postexposure prophylaxis or early therapy for respiratory infections has been proposed. In this study, we evaluated the expression of several interferon-stimulated genes (ISGs) after mucosal administration of HeberNasvac and compared this effect with the nasal delivery of interferon alpha 2b (Nasalferon). Molecular studies of blood samples of 50 subjects from the Profira clinical trial who were locally treated with HeberNasvac or Nasalferon and concurrent untreated individuals were compared based on their relative mRNA expression of OAS1, ISG15, ISG20, STAT1, STAT3, and DRB1-HLA II genes. In most cases, the gene expression induced by HeberNasvac was similar in profile and intensity to the expression induced by Nasalferon and significantly superior to that observed in untreated controls. The immune stimulatory effect of HeberNasvac on ISGs paved the way for its future use as an innate immunity stimulator in elderly persons and immunocompromised subjects or as part of Mambisa, a nasal vaccine to prevent severe acute respiratory syndrome coronavirus 2 infection.


Asunto(s)
Pandemias , Vacunas , Humanos , Anciano , Inmunidad Innata/genética , Vacunas/farmacología
5.
iScience ; 26(2): 105970, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36756366

RESUMEN

Systems-level memory consolidation, a key concept in memory research, involves the conversion of memories that depend on the hippocampus for their formation into efficient hippocampus-independent forms, presumably encoded by cortico-cortical connections. Yet, little is understood about the nature of consolidated neural codes at the cellular ensemble level. Mice require an intact hippocampus for "virtual" spatial learning and to develop neocortical representations of the corresponding experiences. We find that, whereas a novel virtual environment is neither learned nor represented in superficial cortex following severe damage to hippocampus, pre-operatively learned memories and their corresponding sparse and widespread neural ensemble representations in cortical layers II-III are preserved, a sine qua non of memory consolidation. These findings provide a new window for future study of the cellular mechanisms of memory consolidation.

6.
Nat Commun ; 14(1): 7748, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012135

RESUMEN

Episodic memories comprise diverse attributes of experience distributed across neocortical areas. The hippocampus is integral to rapidly binding these diffuse representations, as they occur, to be later reinstated. However, the nature of the information exchanged during this hippocampal-cortical dialogue remains poorly understood. A recent study has shown that the secondary motor cortex carries two types of representations: place cell-like activity, which were impaired by hippocampal lesions, and responses tied to visuo-tactile cues, which became more pronounced following hippocampal lesions. Using two-photon Ca2+ imaging to record neuronal activities in the secondary motor cortex of male Thy1-GCaMP6s mice, we assessed the cortical retrieval of spatial and non-spatial attributes from previous explorations in a virtual environment. We show that, following navigation, spontaneous resting state reactivations convey varying degrees of spatial (trajectory sequences) and non-spatial (visuo-tactile attributes) information, while reactivations of non-spatial attributes tend to precede reactivations of spatial representations surrounding hippocampal sharp-wave ripples.


Asunto(s)
Memoria Episódica , Células de Lugar , Masculino , Ratones , Animales , Hipocampo/fisiología , Neuronas/fisiología , Señales (Psicología)
7.
Phys Rev E ; 108(5): L052301, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115411

RESUMEN

Does the brain optimize itself for storage and transmission of information, and if so, how? The critical brain hypothesis is based in statistical physics and posits that the brain self-tunes its dynamics to a critical point or regime to maximize the repertoire of neuronal responses. Yet, the robustness of this regime, especially with respect to changes in the functional connectivity, remains an unsolved fundamental challenge. Here, we show that both scale-free neuronal dynamics and self-similar features of behavioral dynamics persist following significant changes in functional connectivity. Specifically, we find that the psychedelic compound ibogaine that is associated with an altered state of consciousness fundamentally alters the functional connectivity in the retrosplenial cortex of mice. Yet, the scale-free statistics of movement and of neuronal avalanches among behaviorally related neurons remain largely unaltered. This indicates that the propagation of information within biological neural networks is robust to changes in functional organization of subpopulations of neurons, opening up a new perspective on how the adaptive nature of functional networks may lead to optimality of information transmission in the brain.


Asunto(s)
Encéfalo , Modelos Neurológicos , Ratones , Animales , Encéfalo/fisiología , Estado de Conciencia/fisiología , Neuronas/fisiología , Red Nerviosa/fisiología
8.
Philos Trans R Soc Lond B Biol Sci ; 375(1799): 20190228, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32248779

RESUMEN

The brain likely uses offline periods to consolidate recent memories. One hypothesis holds that the hippocampal output provides a unique, global linking or 'index' code for each memory, and that this code is stored in the cortex in association with locally encoded attributes of each memory. Activation of the index code is hypothesized to evoke coordinated memory trace reactivation thus facilitating consolidation. Retrosplenial cortex (RSC) is a major recipient of hippocampal outflow and we have described populations of neurons there with sparse and orthogonal coding characteristics that resemble hippocampal 'place' cells, and whose expression depends on an intact hippocampus. Using two-photon Ca2+ imaging, we recorded ensembles of neurons in the RSC during periods of immobility before and after active running on a familiar linear treadmill track. Synchronous bursting of distinct groups of neurons occurred during rest both prior to and after running. In the second rest epoch, these patterns were associated with the locations of tactile landmarks and reward. Complementing established views on the functions of the RSC, our findings indicate that the structure is involved with processing landmark information during rest. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.


Asunto(s)
Giro del Cíngulo/fisiología , Consolidación de la Memoria/fisiología , Neuronas/fisiología , Animales , Ratones , Ratones Transgénicos
9.
Sci Rep ; 10(1): 7167, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32346044

RESUMEN

N-methyl-D-aspartate receptor (NMDAr) antagonists such as ketamine (KET) produce psychotic-like behavior in both humans and animal models. NMDAr hypofunction affects normal oscillatory dynamics and synaptic plasticity in key brain regions related to schizophrenia, particularly in the hippocampus and the prefrontal cortex. It has been shown that prior long-term potentiation (LTP) occluded the increase of synaptic efficacy in the hippocampus-prefrontal cortex pathway induced by MK-801, a non-competitive NMDAr antagonist. However, it is not clear whether LTP could also modulate aberrant oscillations and short-term plasticity disruptions induced by NMDAr antagonists. Thus, we tested whether LTP could mitigate the electrophysiological changes promoted by KET. We recorded HPC-PFC local field potentials and evoked responses in urethane anesthetized rats, before and after KET administration, preceded or not by LTP induction. Our results show that KET promotes an aberrant delta-high-gamma cross-frequency coupling in the PFC and an enhancement in HPC-PFC evoked responses. LTP induction prior to KET attenuates changes in synaptic efficiency and prevents the increase in cortical gamma amplitude comodulation. These findings are consistent with evidence that increased efficiency of glutamatergic receptors attenuates cognitive impairment in animal models of psychosis. Therefore, high-frequency stimulation in HPC may be a useful tool to better understand how to prevent NMDAr hypofunction effects on synaptic plasticity and oscillatory coordination in cortico-limbic circuits.


Asunto(s)
Disfunción Cognitiva , Hipocampo/fisiopatología , Ketamina/efectos adversos , Potenciación a Largo Plazo/efectos de los fármacos , Corteza Prefrontal/fisiopatología , Animales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Hipocampo/metabolismo , Ketamina/farmacología , Masculino , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
10.
Front Pharmacol ; 8: 131, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28367124

RESUMEN

The present study reports the behavioral, electrophysiological, and neuropathological effects of cannabidiol (CBD), a major non-psychotropic constituent of Cannabis sativa, in the intrahippocampal pilocarpine-induced status epilepticus (SE) rat model. CBD was administered before pilocarpine-induced SE (group SE+CBDp) or before and after SE (group SE+CBDt), and compared to rats submitted only to SE (SE group), CBD, or vehicle (VH group). Groups were evaluated during SE (behavioral and electrophysiological analysis), as well as at days one and three post-SE (exploratory activity, electrophysiological analysis, neuron density, and neuron degeneration). Compared to SE group, SE+CBD groups (SE+CBDp and SE+CBDt) had increased SE latency, diminished SE severity, increased contralateral afterdischarge latency and decreased relative powers in delta (0.5-4 Hz) and theta (4-10 Hz) bands. Only SE+CBDp had increased vertical exploratory activity 1-day post SE and decreased contralateral relative power in delta 3 days after SE, when compared to SE group. SE+CBD groups also showed decreased neurodegeneration in the hilus and CA3, and higher neuron density in granule cell layer, hilus, CA3, and CA1, when compared to SE group. Our findings demonstrate anticonvulsant and neuroprotective effects of CBD preventive treatment in the intrahippocampal pilocarpine epilepsy model, either as single or multiple administrations, reinforcing the potential role of CBD in the treatment of epileptic disorders.

11.
Exp Neurol ; 279: 232-242, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26953232

RESUMEN

The pathologically synchronized neuronal activity in temporal lobe epilepsy (TLE) can be triggered by network events that were once normal. Under normal conditions, hippocampus and medial prefrontal cortex (mPFC) work in synchrony during a variety of cognitive states. Abnormal changes in this circuit may aid to seizure onset and also help to explain the high association of TLE with mood disorders. We used a TLE rat model generated by perforant path (PP) stimulation to understand whether synchrony between dorsal hippocampal and mPFC networks is altered shortly before a seizure episode. We recorded hippocampal and mPFC local field potentials (LFPs) of animals with spontaneous recurrent seizures (SRSs) to verify the connectivity between these regions. We showed that SRSs decrease hippocampal theta oscillations whereas coherence in theta increases over time prior to seizure onset. This increase in synchrony is accompanied by a stronger coupling between hippocampal theta and mPFC gamma oscillation. Finally, using Granger causality we showed that hippocampus/mPFC synchrony increases in the pre-ictal phase and this increase is likely to be caused by hippocampal networks. The dorsal hippocampus is not directly connected to the mPFC; however, the functional coupling in theta between these two structures rises pre-ictally. Our data indicates that the increase in synchrony between dorsal hippocampus and mPFC may be predictive of seizures and may help to elucidate the network mechanisms that lead to seizure generation.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/fisiopatología , Corteza Prefrontal/fisiopatología , Ritmo Teta , Animales , Sincronización Cortical , Estimulación Eléctrica , Electrodos Implantados , Electroencefalografía , Potenciales Evocados/efectos de los fármacos , Masculino , Red Nerviosa/fisiopatología , Ratas , Ratas Wistar , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA