Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Clin Invest ; 134(6)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227381

RESUMEN

BACKGROUNDVaccination is typically administered without regard to site of prior vaccination, but this factor may substantially affect downstream immune responses.METHODSWe assessed serological responses to initial COVID-19 vaccination in baseline seronegative adults who received second-dose boosters in the ipsilateral or contralateral arm relative to initial vaccination. We measured serum SARS-CoV-2 spike-specific Ig, receptor-binding domain-specific (RBD-specific) IgG, SARS-CoV-2 nucleocapsid-specific IgG, and neutralizing antibody titers against SARS-CoV-2.D614G (early strain) and SARS-CoV-2.B.1.1.529 (Omicron) at approximately 0.6, 8, and 14 months after boosting.RESULTSIn 947 individuals, contralateral boosting was associated with higher spike-specific serum Ig, and this effect increased over time, from a 1.1-fold to a 1.4-fold increase by 14 months (P < 0.001). A similar pattern was seen for RBD-specific IgG. Among 54 pairs matched for age, sex, and relevant time intervals, arm groups had similar antibody levels at study visit 2 (W2), but contralateral boosting resulted in significantly higher binding and neutralizing antibody titers at W3 and W4, with progressive increase over time, ranging from 1.3-fold (total Ig, P = 0.007) to 4.0-fold (pseudovirus neutralization to B.1.1.529, P < 0.001).CONCLUSIONSIn previously unexposed adults receiving an initial vaccine series with the BNT162b2 mRNA COVID-19 vaccine, contralateral boosting substantially increases antibody magnitude and breadth at times beyond 3 weeks after vaccination. This effect should be considered during arm selection in the context of multidose vaccine regimens.FUNDINGM.J. Murdock Charitable Trust, OHSU Foundation, NIH.


Asunto(s)
Formación de Anticuerpos , Vacunas contra la COVID-19 , Adulto , Humanos , Vacuna BNT162 , Vacunación , Anticuerpos Antivirales , Inmunoglobulina G , ARN Mensajero , Anticuerpos Neutralizantes
2.
Evol Appl ; 14(9): 2147-2161, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34603489

RESUMEN

Novel malaria control strategies using genetically engineered mosquitoes (GEMs) are on the horizon. Population modification is one approach wherein mosquitoes are engineered with genes rendering them refractory to the malaria parasite, Plasmodium falciparum, coupled with a low-threshold, Cas9-based gene drive. When released into a wild vector population, GEMs preferentially transmit these parasite-blocking genes to their offspring, ultimately modifying a vector population into a nonvector one. Deploying this technology awaits ecologically contained field trial evaluations. Here, we consider a process for site selection, the first critical step in designing a trial. Our goal is to identify a site that maximizes prospects for success, minimizes risk, and serves as a fair, valid, and convincing test of efficacy and impacts of a GEM product intended for large-scale deployment in Africa. We base site selection on geographic, geological, and biological, rather than social or legal, criteria. We recognize the latter as critically important but not as a first step in selecting a site. We propose physical islands as being the best candidates for a GEM field trial and present an evaluation of 22 African islands. We consider geographic and genetic isolation, biological complexity, island size, and topography and identify two island groups that satisfy key criteria for ideal GEM field trial sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA