RESUMEN
In Alzheimer's disease (AD), there is a decrease in neuronal gene expression induced by HDAC2 increase; however, the mechanisms involved are not fully elucidated. Here, we described how the tyrosine kinase c-Abl increases HDAC2 levels, inducing transcriptional repression of synaptic genes. Our data demonstrate that (1) in neurons, c-Abl inhibition with Imatinib prevents the AßO-induced increase in HDAC2 levels; (2) c-Abl knockdown cells show a decrease in HDAC2 levels, while c-Abl overexpression increases them; (3) c-Abl inhibition reduces HDAC2-dependent repression activity and HDAC2 recruitment to the promoter of several synaptic genes, increasing their expression; (4) c-Abl induces tyrosine phosphorylation of HDAC2, a posttranslational modification, affecting both its stability and repression activity; and (5) treatment with Imatinib decreases HDAC2 levels in a transgenic mice model of AD. Our results support the participation of the c-Abl/HDAC2 signaling pathway in the epigenetic blockade of gene expression in AD pathology.
Asunto(s)
Enfermedad de Alzheimer/genética , Histona Desacetilasa 2/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-abl/fisiología , Epigénesis Genética , Regulación de la Expresión Génica , Células HeLa , Humanos , Fosforilación , Proteínas Proto-Oncogénicas c-abl/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , Tirosina/metabolismoRESUMEN
Tumorigenic cell lines are more susceptible to [Re6Se8I6]3- cluster-induced death than normal cells, becoming a novel candidate for cancer treatment. Still, the feasibility of using this type of molecules in human patients remains unclear and further pharmacokinetics analysis is needed. Using coupled plasma optical emission spectroscopy, we determined the Re-cluster tissue content in injected mice, as a biodistribution measurement. Our results show that the Re-cluster successfully reaches different tissues, accumulating mainly in heart and liver. In order to dissect the mechanism underlying cluster biodistribution, we used three different experimental approaches. First, we evaluate the degree of lipophilicity by determining the octanol/water partition coefficient. The cluster mostly remained in the octanol fraction, with a coefficient of 1.86 ± 0.02, which indicates it could potentially cross cell membranes. Then, we measured the biological membrane penetration through a parallel artificial membrane permeability assays (PAMPA) assay. The Re-cluster crosses the artificial membrane, with a coefficient of 122 nm/s that is considered highly permeable. To evaluate a potential application of the Re-cluster in central nervous system (CNS) tumors, we analyzed the cluster's brain penetration by exposing cultured blood-brain-barrier (BBB) cells to increasing concentrations of the cluster. The Re-cluster effectively penetrates the BBB, reaching nearly 30% of the brain side after 24 h. Thus, our results indicate that the Re-cluster penetrates biological membranes reaching different target organs-most probably due to its lipophilic properties-becoming a promising anti-cancer drug with high potential for CNS cancer's diagnosis and treatment.
Asunto(s)
Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Complejos de Coordinación/farmacología , Renio/farmacología , Transporte Biológico/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/patología , Humanos , Selenio/farmacología , Distribución Tisular/efectos de los fármacosRESUMEN
BACKGROUND: Stable and non-toxic fluorescent markers are gaining attention in molecular diagnostics as powerful tools for enabling long and reliable biological studies. Such markers should not only have a long half-life under several assay conditions showing no photo bleaching or blinking but also, they must allow for their conjugation or functionalization as a crucial step for numerous applications such as cellular tracking, biomarker detection and drug delivery. RESULTS: We report the functionalization of stable fluorescent markers based on nanodiamonds (NDs) with a bifunctional peptide. This peptide is made of a cell penetrating peptide and a six amino acids long ß-sheet breaker peptide that is able to recognize amyloid ß (Aß) aggregates, a biomarker for the Alzheimer disease. Our results indicate that functionalized NDs (fNDs) are not cytotoxic and can be internalized by the cells. The fNDs allow ultrasensitive detection (at picomolar concentrations of NDs) of in vitro amyloid fibrils and amyloid aggregates in AD mice brains. CONCLUSIONS: The fluorescence of functionalized NDs is more stable than that of fluorescent markers commonly used to stain Aß aggregates such as Thioflavin T. These results pave the way for performing ultrasensitive and reliable detection of Aß aggregates involved in the pathogenesis of the Alzheimer disease.
Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Amiloide/análisis , Colorantes Fluorescentes/química , Nanodiamantes/química , Amiloide/metabolismo , Péptidos beta-Amiloides/análisis , Péptidos beta-Amiloides/metabolismo , Animales , Benzotiazoles/química , Benzotiazoles/toxicidad , Biomarcadores/análisis , Línea Celular , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , Colorantes Fluorescentes/toxicidad , Humanos , Ratones Transgénicos , Nanodiamantes/toxicidad , Agregado de ProteínasRESUMEN
In the last two decades there has been an enormous growth in the use of clinical simulation. This teaching-learning methodology is currently the main tool used in the training of healthcare professionals. Clinical simulation is in tune with new paradigms in education and is consistent with educational theories that support the use of experiential learning. It promotes the development of psychomotor skills and strengthens executive functions. This pedagogical approach can be applied in many healthcare topics and is particularly relevant in the context of restricted access to clinical settings. This is particularly relevant considering the current crisis caused by the COVID-19 pandemic, or when trying to reduce the frequency of accidents attributed to errors in clinical practice. This mini-review provides an overview of the current literature on healthcare simulation methods, as well as prospects for education and public health benefits. A literature search was conducted in order to find the most current trends and state of the art in medical education simulation. Presently, there are many areas of application for this methodology and new areas are constantly being explored. It is concluded that medical education simulation has a solid theoretical basis and wide application in the training of health professionals at present. In addition, it is consolidated as an unavoidable methodology both in undergraduate curricula and in continuing medical education. A promising scenario for medical education simulation is envisaged in the future, hand in hand with the development of technological advances.
Asunto(s)
COVID-19 , Educación Médica , COVID-19/epidemiología , Simulación por Computador , Curriculum , Humanos , PandemiasRESUMEN
The central event in protein misfolding disorders (PMDs) is the accumulation of a misfolded form of a naturally expressed protein. Despite the diversity of clinical symptoms associated with different PMDs, many similarities in their mechanism suggest that distinct pathologies may cross talk at the molecular level. The main goal of this study was to analyze the interaction of the protein misfolding processes implicated in Alzheimer's and prion diseases. For this purpose, we inoculated prions in an Alzheimer's transgenic mouse model that develop typical amyloid plaques and followed the progression of pathological changes over time. Our findings show a dramatic acceleration and exacerbation of both pathologies. The onset of prion disease symptoms in transgenic mice appeared significantly faster with a concomitant increase on the level of misfolded prion protein in the brain. A striking increase in amyloid plaque deposition was observed in prion-infected mice compared with their noninoculated counterparts. Histological and biochemical studies showed the association of the two misfolded proteins in the brain and in vitro experiments showed that protein misfolding can be enhanced by a cross-seeding mechanism. These results suggest a profound interaction between Alzheimer's and prion pathologies, indicating that one protein misfolding process may be an important risk factor for the development of a second one. Our findings may have important implications to understand the origin and progression of PMDs.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedades por Prión/metabolismo , Priones/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Péptidos beta-Amiloides/química , Animales , Encéfalo/metabolismo , Encéfalo/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Enfermedades por Prión/patología , Priones/química , Pliegue de ProteínaRESUMEN
Previous studies showed that injection of tissue extracts containing amyloid-ß (Aß) aggregates accelerate amyloid deposition in the brain of mouse models of Alzheimer's disease (AD) through prion-like mechanisms. In this study, we evaluated whether brain amyloidosis could be accelerated by blood infusions, procedures that have been shown to transmit prion diseases in animals and humans. Young transgenic mice infused with whole blood or plasma from old animals with extensive Aß deposition in their brains developed significantly higher levels brain amyloidosis and neuroinflammation compared to untreated animals or mice infused with wild type blood. Similarly, intra-venous injection of purified Aß aggregates accelerated amyloid pathology, supporting the concept that Aß seeds present in blood can reach the brain to promote neuropathological alterations in the brain of treated animals. However, an amyloid-enhancing effect of other factors present in the blood of donors cannot be discarded. Our results may help to understand the role of peripheral (amyloid-dependent or -independent) factors implicated in the development of AD and uncover new strategies for disease intervention.
Asunto(s)
Enfermedad de Alzheimer/sangre , Péptidos beta-Amiloides/sangre , Amiloidosis/sangre , Transfusión Sanguínea , Encéfalo/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Amiloidosis/genética , Amiloidosis/metabolismo , Amiloidosis/patología , Animales , Transfusión de Componentes Sanguíneos , Encéfalo/patología , Humanos , Ratones , Ratones TransgénicosRESUMEN
Alzheimer's disease (AD) afflicts an estimated 20 million people worldwide and is the fourth-leading cause of death in the developed world. The most common cause of dementia in older individuals, AD is characterized by neuropathologies including synaptic and neuronal degeneration, amyloid plaques, and neurofibrillary tangles (NTFs). Amyloid plaques are primarily composed of amyloid-beta peptide (Aß), which accumulates in the brains of patients with AD. Further, small aggregates termed Aß oligomers are implicated in the synaptic loss and neuronal degeneration underlying early cognitive impairments. Whether Aß accumulates in part because of dysregulated clearance from the brain remains unclear. The flow of substances (e.g., nutrients, drugs, toxins) in and out of the brain is mediated by the blood-brain-barrier (BBB). The BBB exhibits impairment in AD patients and animal models. The effect of BBB impairment on Aß, and whether BBB function is affected by non-neurological pathologies that impair peripheral clearance requires further investigation. In particular, impaired peripheral clearance is a feature of nonalcoholic fatty liver disease (NAFLD), a spectrum of liver disorders characterized by accumulation of fat in the liver accompanied by varying degrees of inflammation and hepatocyte injury. NAFLD has reached epidemic proportions, with an estimated prevalence between 20% and 30% of the general population. This chronic condition may influence AD pathogenesis. This review article summarizes the current state of the literature linking NAFLD and AD, highlighting the role of the major Aß efflux and clearance protein, the LRP-1 receptor, which is abundantly expressed in liver, brain, and vasculature.
RESUMEN
A key molecular pathway implicated in diverse neurodegenerative diseases is the misfolding, aggregation, and accumulation of proteins in the brain. Compelling evidence strongly supports the hypothesis that accumulation of misfolded proteins leads to synaptic dysfunction, neuronal apoptosis, brain damage, and disease. However, the mechanism by which protein misfolding and aggregation trigger neurodegeneration and the identity of the neurotoxic structure is still unclear. The aim of this article is to review the literature around the molecular mechanism and role of misfolded protein aggregates in neurodegeneration and the potential for the misfolding process to lead to a transmissible form of disease by a prion-based model of propagation.
Asunto(s)
Amiloide/metabolismo , Degeneración Nerviosa/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Priones/metabolismo , Pliegue de Proteína , Neuropatías Amiloides/metabolismo , Humanos , Enfermedades por Prión/metabolismoRESUMEN
Alzheimer's disease is a neurodegenerative condition affecting millions of people worldwide. Alzheimer's symptoms include memory loss and cognitive decline. Pathologically, the hallmarks of Alzheimer´s are the presence of Amyloid beta-plaques, neurofibrillary tangles, and neuronal loss. Unfortunately, no cure is presently available and current treatments are only symptomatic. Transforming growth factor beta type I (TGF-ß1) is a trophic factor involved in neuronal development and synaptic plasticity. Impairment of TGF-ß1 signaling is associated with exacerbated Aß deposition and neurofibrillary tangle formation, which increases neurodegeneration. Aging and chronic inflammation reduce the canonical TGF-ß1/Smad signaling, facilitating cytotoxic activation of microglia and microgliamediated neurodegeneration This review gathers together evidence for a neuroprotective role of TGF-ß in Alzheimer's disease. Restoring TGF-ß1 signaling impairment may be a new pharmacological strategy Alzheimer's treatment.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Animales , Humanos , Inflamación Neurogénica/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Transducción de SeñalRESUMEN
Compelling evidence strongly suggests that the conversion of a normal soluble protein into a beta-sheet-rich oligomeric structure and further fibril formation is the critical step in the pathogenesis of several human diseases, termed protein misfolding disorders. Therefore, a promising therapeutic strategy consists of the design of molecules that prevent the misfolding and aggregation of these proteins. In this chapter, we survey the mechanism of protein misfolding and some strategies to rationally produce inhibitors of this process.
Asunto(s)
Diseño de Fármacos , Enfermedades Genéticas Congénitas/tratamiento farmacológico , Péptidos/química , Ingeniería de Proteínas , Pliegue de Proteína , Amiloide/antagonistas & inhibidores , Animales , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Humanos , Péptidos/genética , Péptidos/uso terapéutico , Desnaturalización Proteica/efectos de los fármacos , Ingeniería de Proteínas/métodos , Estructura Secundaria de ProteínaRESUMEN
One of the pathological hallmarks of Alzheimer's disease (AD) is the presence of amyloid plaques, which are deposits of misfolded and aggregated amyloid-beta peptide (Aß). The role of the c-Abl tyrosine kinase in Aß-mediated neurodegeneration has been previously reported. Here, we investigated the therapeutic potential of inhibiting c-Abl using imatinib. We developed a novel method, based on a technique used to detect prions (PMCA), to measure minute amounts of misfolded-Aß in the blood of AD transgenic mice. We found that imatinib reduces Aß-oligomers in plasma, which correlates with a reduction of AD brain features such as plaques and oligomers accumulation, neuroinflammation, and cognitive deficits. Cells exposed to imatinib and c-Abl KO mice display decreased levels of ß-CTF fragments, suggesting that an altered processing of the amyloid-beta protein precursor is the most probable mechanism behind imatinib effects. Our findings support the role of c-Abl in Aß accumulation and AD, and propose AD-PMCA as a new tool to evaluate AD progression and screening for drug candidates.
Asunto(s)
Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/enzimología , Péptidos beta-Amiloides/sangre , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-abl/sangre , Enfermedad de Alzheimer/patología , Animales , Línea Celular , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Ratones , Ratones Noqueados , Ratones TransgénicosRESUMEN
The early stages of Alzheimer's disease are characterised by impaired synaptic plasticity and synapse loss. Here, we show that amyloid-ß oligomers (AßOs) activate the c-Abl kinase in dendritic spines of cultured hippocampal neurons and that c-Abl kinase activity is required for AßOs-induced synaptic loss. We also show that the EphA4 receptor tyrosine kinase is upstream of c-Abl activation by AßOs. EphA4 tyrosine phosphorylation (activation) is increased in cultured neurons and synaptoneurosomes exposed to AßOs, and in Alzheimer-transgenic mice brain. We do not detect c-Abl activation in EphA4-knockout neurons exposed to AßOs. More interestingly, we demonstrate EphA4/c-Abl activation is a key-signalling event that mediates the synaptic damage induced by AßOs. According to this results, the EphA4 antagonistic peptide KYL and c-Abl inhibitor STI prevented i) dendritic spine reduction, ii) the blocking of LTP induction and iii) neuronal apoptosis caused by AßOs. Moreover, EphA4-/- neurons or sh-EphA4-transfected neurons showed reduced synaptotoxicity by AßOs. Our results are consistent with EphA4 being a novel receptor that mediates synaptic damage induced by AßOs. EphA4/c-Abl signalling could be a relevant pathway involved in the early cognitive decline observed in Alzheimer's disease patients.
Asunto(s)
Péptidos beta-Amiloides/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-abl/metabolismo , Receptor EphA4/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/fisiología , Animales , Células Cultivadas , Espinas Dendríticas/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación , Ratas Sprague-Dawley , Sinapsis/patologíaRESUMEN
Several epidemiological studies have shown that cigarette smoking might alter the incidence of Alzheimer's disease. However, inconsistent results have been reported regarding the risk of Alzheimer's disease among smokers. Previous studies in experimental animal models have reported that administration of some cigarette components (for example, nicotine) alters amyloid-ß aggregation, providing a possible link. However, extrapolation of these findings towards the in vivo scenario is not straightforward as smoke inhalation involves a number of other components. Here, we analysed the effect of smoking under more relevant conditions. We exposed transgenic mouse models of Alzheimer's disease to cigarette smoke and analysed the neuropathological alterations in comparison with animals not subjected to smoke inhalation. Our results showed that smoking increases the severity of some abnormalities typical of Alzheimer's disease, including amyloidogenesis, neuroinflammation and tau phosphorylation. Our findings suggest that cigarette smoking may increase Alzheimer's disease onset and exacerbate its features and thus, may constitute an important environmental risk factor for Alzheimer's disease.