Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Microbiol ; 23(10): 6275-6291, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34490977

RESUMEN

Aridity negatively affects the diversity and abundance of edaphic microbial communities and their multiple ecosystem services, ultimately impacting vegetation productivity and biotic interactions. Investigation about how plant-associated microbial communities respond to increasing aridity is of particular importance, especially in light of the global climate change predictions. To assess the effect of aridity on plant associated bacterial communities, we investigated the diversity and co-occurrence of bacteria associated with the bulk soil and the root system of olive trees cultivated in orchards located in higher, middle and lower arid regions of Tunisia. The results indicated that the selective process mediated by the plant root system is amplified with the increment of aridity, defining distinct bacterial communities, dominated by aridity-winner and aridity-loser bacteria negatively and positively correlated with increasing annual rainfall, respectively. Aridity regulated also the co-occurrence interactions among bacteria by determining specific modules enriched with one of the two categories (aridity-winners or aridity-losers), which included bacteria with multiple PGP functions against aridity. Our findings provide new insights into the process of bacterial assembly and interactions with the host plant in response to aridity, contributing to understand how the increasing aridity predicted by climate changes may affect the resilience of the plant holobiont.


Asunto(s)
Ecosistema , Olea , Bacterias/genética , Clima Desértico , Suelo , Microbiología del Suelo
2.
J Basic Microbiol ; 58(10): 827-835, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30019339

RESUMEN

Androctonus australis is one of the most ubiquitous and common scorpion species in desert and arid lands from North Africa to India and it has an important ecological role and social impact. The bacterial community associated to this arachnid is unknown and we aimed to dissect its species composition in the gut, gonads, and venom gland. A 16S rRNA gene culture-independent diversity analysis revealed, among six other taxonomic groups (Firmicutes, Betaproteobacteria, Gammaproteobacteria, Flavobacteria, Actinobacteria, and Cyanobacteria), a dominance of Mollicutes phylotypes recorded both in the digestive tract and the gonads. These related Mollicutes include two Spiroplasma phylotypes (12.5% of DGGE bands and 15% of clones), and a new Mycoplasma cluster (80% of clones) showing 16S rRNA sequence identities of 95 and 93% with Mollicutes detected in the Mexican scorpions Centruroides limpidus and Vaejovis smithi, respectively. Such scorpion-associated Mollicutes form a new lineage that share a distant ancestor with Mycoplasma hominis. The observed host specificity with the apparent phylogenetic divergence suggests a relatively long co-evolution of these symbionts with the scorpion hosts. From the ecological point of view, such association may play a beneficial role for the host fitness, especially during dormancy or molt periods.


Asunto(s)
Variación Genética , Filogenia , Escorpiones/microbiología , Simbiosis , Tenericutes/clasificación , Tenericutes/fisiología , Animales , Bacterias/clasificación , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , ADN Bacteriano/genética , Especificidad del Huésped , India , México , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tenericutes/genética
3.
Environ Microbiol ; 17(2): 316-31, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24571749

RESUMEN

Although drought is an increasing problem in agriculture, the contribution of the root-associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cultivar Barbera may enhance plant growth under drought stress. Eight isolates, over 510 strains, were tested in vivo for their capacity to support grapevine growth under water stress. The selected strains exhibited a vast array of plant growth promoting (PGP) traits, and confocal microscopy observation of gfp-labelled Acinetobacter and Pseudomonas isolates showed their ability to adhere and colonize both the Arabidopsis and grapevine rhizoplane. Tests on pepper plants fertilized with the selected strains, under both optimal irrigation and drought conditions, showed that PGP activity was a stress-dependent and not a per se feature of the strains. The isolates were capable of increasing shoot and leaf biomass, shoot length, and photosynthetic activity of drought-challenged grapevines, with an enhanced effect in drought-sensitive rootstock. Three isolates were further assayed for PGP capacity under outdoor conditions, exhibiting the ability to increase grapevine root biomass. Overall, the results indicate that PGP bacteria contribute to improve plant adaptation to drought through a water stress-induced promotion ability.


Asunto(s)
Adaptación Fisiológica , Arabidopsis/microbiología , Sequías , Raíces de Plantas/microbiología , Vitis/microbiología , Acinetobacter/aislamiento & purificación , Biomasa , Microbiota , Fotosíntesis/fisiología , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Pseudomonas/aislamiento & purificación , Estrés Fisiológico , Agua
4.
Microb Ecol ; 66(4): 831-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23949950

RESUMEN

The genetic diversity of a collection of 336 spore-forming isolates recovered from five salt-saturated brines and soils (Chott and Sebkhas) mainly located in the hyper-arid regions of the southern Tunisian Sahara has been assessed. Requirements and abilities for growth at a wide range of salinities\ showed that 44.3 % of the isolates were extremely halotolerant, 23 % were moderate halotolerant, and 32.7 % were strict halophiles, indicating that they are adapted to thrive in these saline ecosystems. A wide genetic diversity was documented based on 16S-23S rRNA internal transcribed spacer fingerprinting profiles (ITS) and 16S rRNA gene sequences that clustered the strains into seven genera: Bacillus, Gracilibacillus, Halobacillus, Oceanobacillus, Paenibacillus, Pontibacillus, and Virgibacillus. Halobacillus trueperi was the most encountered species in all the sites and presented a large intraspecific diversity with a multiplicity of ITS types. The most frequent ITS type included 42 isolates that were chosen for assessing of the intraspecific diversity by BOX-PCR fingerprinting. A high intraspecific microdiversity was documented by 14 BOX-PCR genotypes whose distribution correlated with the strain geographic origin. Interestingly, H. trueperi isolates presented an uneven geographic distribution among sites with the highest frequency of isolation from the coastal sites, suggesting a marine rather than terrestrial origin of the strains. The high frequency and diversity of H. trueperi suggest that it is a major ecosystem-adapted microbial component of the Tunisian Sahara harsh saline systems of marine origin.


Asunto(s)
Sedimentos Geológicos/microbiología , Halobacillus/clasificación , Halobacillus/aislamiento & purificación , Cloruro de Sodio/metabolismo , Microbiología del Suelo , Biodiversidad , Ecosistema , Sedimentos Geológicos/análisis , Halobacillus/genética , Halobacillus/metabolismo , Datos de Secuencia Molecular , Filogenia , Cloruro de Sodio/análisis , Suelo/química , Túnez
5.
J Basic Microbiol ; 49 Suppl 1: S13-23, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19322832

RESUMEN

Members of the genus Bacillus and related genera are ubiquitous in nature. However, Bacillus species isolated from marine sediments have attracted less interest respect to their terrestrial relatives. Here, we report the phylogenetic diversity of a collection of 96 Bacilli, isolated from 17 distinct stations of 5 oceanographic campaigns. The diversity was analysed by phenotypic and molecular approaches based on the amplified rDNA restriction analysis (ARDRA), amplification of the internal transcribed spacers (ITS-PCR) and on 16S rRNA sequencing. Intra-specific polymorphism was efficiently detected by biochemical analysis and ARDRA while results of ITS-PCR were in agreement with 16S rRNA sequencing. The identification results assigned 68% of the isolates to the species B. subtilis, B. licheniformis, B. pumilus and B. cereus. Phylogenetic analysis allowed the separation of 9 isolates in a clade that may represent a group of obligate marine Bacillus since they clustered with B. firmus, B. foraminis and marine isolates with metal oxidation and bioaccumulation capabilities. The remaining isolates showed a close affiliation to the genera Virgibacillus, Gracilibacillus and Paenibacillus. The widespread of Bacilli and their high diversity level observed in this work point out the need of more extensive studies to understand their distribution and ecology in deep-sea environments.


Asunto(s)
Bacillus/genética , Biodiversidad , Sedimentos Geológicos/microbiología , Filogenia , Bacillus/clasificación , Bacillus/aislamiento & purificación , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , ADN Ribosómico/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
Environ Technol ; 39(7): 859-872, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28357896

RESUMEN

A new bioflocculant named pKr produced by hydrocarbonoclastic strain Kocuria rosea BU22S (KC152976) was investigated. Gas chromatography-flame ionization detector (GC-FID) analysis confirmed the high potential of the strain BU22S in the degradation of n-alkanes. Plackett-Burman experimental design and response surface methodology were carried out to optimize pKr production. Glucose, peptone and incubation time were found to be the most significant factors affecting bioflocculant production. Maximum pKr production was about 4.72 ± 0.02 g/L achieved with 15.61 g/L glucose, 6.45 g/L peptone and 3 days incubation time. Chemical analysis of pKr indicated that it contained 71.62% polysaccharides, 16.36% uronic acid and 2.83% proteins. Thin layer chromatography analysis showed that polysaccharides fraction consisted of galactose and xylose. Fourier transform infrared analysis revealed the presence of many functional groups, hydroxyl, carboxyl, methoxyl, acetyl and amide that likely contribute to flocculation. K. rosea pKr showed high flocculant potential using kaolin clay at different pH (2-11), temperature (0-100°C) and cation concentrations. The bioflocculant was particularly effective in flocculating soluble anionic dyes, Reactive Blue 4 and Acid Yellow, with a decolorization efficiency of 76.4% and 72.6%, respectively. The outstanding flocculating performances suggest that pKr could be useful for bioremediation applications.


Asunto(s)
Colorantes/química , Polisacáridos/química , Floculación , Concentración de Iones de Hidrógeno , Caolín , Temperatura , Purificación del Agua
7.
Microbiol Res ; 186-187: 71-80, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242145

RESUMEN

In the present study, the ecological distribution of marine Actinobacteria isolated from seamount and non-seamount stations in the Tyrrhenian Sea was investigated. A collection of 110 isolates was analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene sequencing of representatives for each ARISA haplotype (n=49). Phylogenetic analysis of 16S rRNA sequences showed a wide diversity of marine isolates and clustered the strains into 11 different genera, Janibacter, Rhodococcus, Arthrobacter, Kocuria, Dietzia, Curtobacterium, Micrococcus, Citricoccus, Brevibacterium, Brachybacterium and Nocardioides. Interestingly, Janibacter limosus was the most encountered species particularly in seamounts stations, suggesting that it represents an endemic species of this particular ecosystem. The application of BOX-PCR fingerprinting on J. limosus sub-collection (n=22), allowed their separation into seven distinct BOX-genotypes suggesting a high intraspecific microdiversity among the collection. Furthermore, by screening the biotechnological potential of selected actinobacterial strains, J. limosus was shown to exhibit the most important biosurfactant activity. Our overall data indicates that Janibacter is a major and active component of seamounts in the Tyrrhenian Sea adapted to low nutrient ecological niche.


Asunto(s)
Actinobacteria/clasificación , Actinobacteria/aislamiento & purificación , Biodiversidad , Sedimentos Geológicos/microbiología , Actinobacteria/genética , Análisis por Conglomerados , Dermatoglifia del ADN , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Genotipo , Región Mediterránea , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Microbes Environ ; 28(3): 361-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24005887

RESUMEN

With respect to their terrestrial relatives, marine Bacillales have not been sufficiently investigated. In this report, the diversity of deep-sea Bacillales, isolated from seamount and non-seamount stations at 3,425 to 3,580 m depth in the Tyrrhenian Sea, was investigated using PCR fingerprinting and 16S rRNA sequence analysis. The isolate collection (n=120) was de-replicated by automated ribosomal intergenic spacer analysis (ARISA), and phylogenetic diversity was analyzed by 16S rRNA gene sequencing of representatives of each ARISA haplotype (n=37). Phylogenetic analysis of isolates showed their affiliation to six different genera of low G+C% content Gram-positive Bacillales: Bacillus, Staphylococcus, Exiguobacterium, Paenibacillus, Lysinibacillus and Terribacillus. Bacillus was the dominant genus represented by the species B. licheniformis, B. pumilus, B. subtilis, B. amyloliquefaciens and B. firmus, typically isolated from marine sediments. The most abundant species in the collection was B. licheniformis (n=85), which showed seven distinct ARISA haplotypes with haplotype H8 being the most dominant since it was identified by 63 isolates. The application of BOX-PCR fingerprinting to the B. licheniformis sub-collection allowed their separation into five distinct BOX genotypes, suggesting a high level of intraspecies diversity among marine B. licheniformis strains. This species also exhibited distinct strain distribution between seamount and non-seamount stations and was shown to be highly prevalent in non-seamount stations. This study revealed the great microdiversity of marine Bacillales and contributes to understanding the biogeographic distribution of marine bacteria in deep-sea sediments.


Asunto(s)
Bacillales/aislamiento & purificación , Biodiversidad , ADN Espaciador Ribosómico/genética , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , Bacillales/clasificación , Bacillales/genética , Técnicas de Tipificación Bacteriana , Dermatoglifia del ADN , ADN Bacteriano/genética , Datos de Secuencia Molecular , Océanos y Mares , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
9.
Biomed Res Int ; 2013: 648141, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324969

RESUMEN

Haloalkaliphiles are polyextremophiles adapted to grow at high salt concentrations and alkaline pH values. In this work, we isolated 122 haloalkaliphilic bacteria upon enrichments of 23 samples from 5 distinct saline systems of southern Tunisia, growing optimally in media with 10% salt and at pH 10. The collection was classified into 44 groups based on the amplification of the 16S-23S rRNA internal transcribed spacers (ITS-PCR). Phylogenetic analysis and sequencing of the 16S rRNA genes allowed the identification of 13 genera and 20 distinct species. Three gram-positive isolates showing between 95 and 96% of 16S rRNA sequence homology with Bacillus saliphilus could represent new species or genus. Beside the difference in bacterial diversity between the studied sites, several species ecological niches correlations were demonstrated such as Oceanobacillus in salt crust, Nesterenkonia in sand, and Salinicoccus in the rhizosphere of the desert plant Salicornia. The collection was further evaluated for the production of extracellular enzymes. Activity tests showed that gram-positive bacteria were mostly active, particularly for protease, lipase, DNase, and amylase production. Our overall results demonstrate the huge phenotypic and phylogenetic diversity of haloalkaliphiles in saline systems of southern Tunisia which represent a valuable source of new lineages and metabolites.


Asunto(s)
Bacterias Grampositivas/genética , Filogenia , ARN Ribosómico 16S/genética , Salinidad , ADN Bacteriano/genética , Clima Desértico , Ecología , Bacterias Grampositivas/crecimiento & desarrollo , Cloruro de Sodio , Túnez
10.
PLoS One ; 7(10): e48479, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23119032

RESUMEN

BACKGROUND: Traditional agro-systems in arid areas are a bulwark for preserving soil stability and fertility, in the sight of "reverse desertification". Nevertheless, the impact of desert farming practices on the diversity and abundance of the plant associated microbiome is poorly characterized, including its functional role in supporting plant development under drought stress. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the structure of the microbiome associated to the drought-sensitive pepper plant (Capsicum annuum L.) cultivated in a traditional Egyptian farm, focusing on microbe contribution to a crucial ecosystem service, i.e. plant growth under water deficit. The root system was dissected by sampling root/soil with a different degree of association to the plant: the endosphere, the rhizosphere and the root surrounding soil that were compared to the uncultivated soil. Bacterial community structure and diversity, determined by using Denaturing Gradient Gel Electrophoresis, differed according to the microhabitat, indicating a selective pressure determined by the plant activity. Similarly, culturable bacteria genera showed different distribution in the three root system fractions. Bacillus spp. (68% of the isolates) were mainly recovered from the endosphere, while rhizosphere and the root surrounding soil fractions were dominated by Klebsiella spp. (61% and 44% respectively). Most of the isolates (95%) presented in vitro multiple plant growth promoting (PGP) activities and stress resistance capabilities, but their distribution was different among the root system fractions analyzed, with enhanced abilities for Bacillus and the rhizobacteria strains. We show that the C. annuum rhizosphere under desert farming enriched populations of PGP bacteria capable of enhancing plant photosynthetic activity and biomass synthesis (up to 40%) under drought stress. CONCLUSIONS/SIGNIFICANCE: Crop cultivation provides critical ecosystem services in arid lands with the plant root system acting as a "resource island" able to attract and select microbial communities endowed with multiple PGP traits that sustain plant development under water limiting conditions.


Asunto(s)
Sequías , Metagenoma , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Microbiología del Suelo , Agricultura , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Capsicum/microbiología , Capsicum/fisiología , Análisis por Conglomerados , Ecosistema , Metagenoma/genética , Filogenia , Plantas/microbiología , ARN Ribosómico 16S , Rizosfera , Estrés Fisiológico
11.
Syst Appl Microbiol ; 33(4): 222-31, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20413241

RESUMEN

Bacterial diversity in Tyrrhenian Sea sediments was assessed using cultivation-dependent and -independent approaches. Samples collected from the different sediment layers (up to 30cm) relative to four seamount and non-seamount stations, at depths from 3425 to 3580m, were subjected to DNA extraction and 16S rRNA amplification targeting the V3 region. Denaturing gradient gel electrophoresis (DGGE) showed several heterogeneous profiles and 27 single bands were excised and sequenced. Sequence analysis revealed the presence of Firmicutes, Actinobacteria and Chloroflexi in 26% of the DGGE bands and a predominance of sequences affiliated to cultivable and uncultivable clones of Gammaproteobacteria (55%). To corroborate these findings, cultivation attempts were performed that allowed the isolation of 87 strains assigned to the proteobacterial classes. Identification was achieved by means of automated ribosomal intergenic spacer analysis (ARISA) and by 16S rDNA sequencing. The isolates were related to the gamma, alpha and beta subclasses of Proteobacteria with respective percentages of 77, 17 and 6%. The most predominant Gammaproteobacteria isolates, assigned to the Psychrobacter marincola and P. submarinus clade (n=53) and to Halomonas aquamarina (n=14), showed a huge intraspecific diversity with 29 distinct ARISA haplotypes. The detection by both approaches of these psychrophilic and moderately halophilic species and their extensive microdiversity indicated their predominance in Tyrrhenian Sea sediments where they constituted the indigenous microflora.


Asunto(s)
Biodiversidad , Sedimentos Geológicos/microbiología , Proteobacteria/clasificación , Proteobacteria/aislamiento & purificación , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Electroforesis en Gel de Poliacrilamida , Mar Mediterráneo , Datos de Secuencia Molecular , Desnaturalización de Ácido Nucleico , Filogenia , Proteobacteria/genética , Proteobacteria/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
Can J Microbiol ; 53(3): 343-50, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17538643

RESUMEN

The genomic diversity and relationship among 56 Bacillus thuringiensis and Bacillus cereus type strains were investigated by multi-REP-PCR fingerprinting consisting of three PCR reactions targeting the enterobacterial ERIC1 and ERIC2 and the streptococcal BOXA1R consensus sequences. A total of 113 polymorphic bands were generated in the REP-PCR profiles that allowed tracing of a single dendrogram with three major groups. Bacillus cereus strains clustered together in the A and B groups. Most of the B. thuringiensis strains clustered in group C, which included groups of serovars with a within-group similarity higher than 40% as follows: darmstadiensis, israelensis, and morrisoni; aizawai, kenyae, pakistani, and thompsoni; canadensis, entomocidus, galleriae, kurstaki, and tolworthi; alesti, dendrolimus, and kurstaki; and finitimus, sotto, and thuringiensis. Multi-REP-PCR fingerprinting clustered B. thuringiensis serovars in agreement with previously developed multilocus sequence typing schemes, indicating that it represents a rapid shortcut for addressing the genetic relationship of unknown strains with the major known serovars.


Asunto(s)
Bacillus cereus/clasificación , Bacillus thuringiensis/clasificación , Dermatoglifia del ADN/métodos , Variación Genética , Reacción en Cadena de la Polimerasa/métodos , Secuencias Repetitivas de Ácidos Nucleicos/genética , Bacillus cereus/genética , Bacillus thuringiensis/genética , Técnicas de Tipificación Bacteriana , Cartilla de ADN , Genoma Bacteriano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA