Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Rev Mol Cell Biol ; 25(4): 309-332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38081975

RESUMEN

The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.


Asunto(s)
Cromatina , Histonas , Humanos , Histonas/metabolismo , Nucleosomas , Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina , ADN , Adenosina Trifosfato/metabolismo
2.
Cell ; 152(3): 453-66, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374342

RESUMEN

There are ~650,000 Alu elements in transcribed regions of the human genome. These elements contain cryptic splice sites, so they are in constant danger of aberrant incorporation into mature transcripts. Despite posing a major threat to transcriptome integrity, little is known about the molecular mechanisms preventing their inclusion. Here, we present a mechanism for protecting the human transcriptome from the aberrant exonization of transposable elements. Quantitative iCLIP data show that the RNA-binding protein hnRNP C competes with the splicing factor U2AF65 at many genuine and cryptic splice sites. Loss of hnRNP C leads to formation of previously suppressed Alu exons, which severely disrupt transcript function. Minigene experiments explain disease-associated mutations in Alu elements that hamper hnRNP C binding. Thus, by preventing U2AF65 binding to Alu elements, hnRNP C plays a critical role as a genome-wide sentinel protecting the transcriptome. The findings have important implications for human evolution and disease.


Asunto(s)
Elementos Alu , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Transcriptoma , Evolución Molecular , Exones , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoprecipitación , Sitios de Empalme de ARN , Análisis de Secuencia de ARN , Factor de Empalme U2AF
3.
Nature ; 589(7842): 462-467, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328628

RESUMEN

Mechanical deformations of DNA such as bending are ubiquitous and have been implicated in diverse cellular functions1. However, the lack of high-throughput tools to measure the mechanical properties of DNA has limited our understanding of how DNA mechanics influence chromatin transactions across the genome. Here we develop 'loop-seq'-a high-throughput assay to measure the propensity for DNA looping-and determine the intrinsic cyclizabilities of 270,806 50-base-pair DNA fragments that span Saccharomyces cerevisiae chromosome V, other genomic regions, and random sequences. We found sequence-encoded regions of unusually low bendability within nucleosome-depleted regions upstream of transcription start sites (TSSs). Low bendability of linker DNA inhibits nucleosome sliding into the linker by the chromatin remodeller INO80, which explains how INO80 can define nucleosome-depleted regions in the absence of other factors2. Chromosome-wide, nucleosomes were characterized by high DNA bendability near dyads and low bendability near linkers. This contrast increases for deeper gene-body nucleosomes but disappears after random substitution of synonymous codons, which suggests that the evolution of codon choice has been influenced by DNA mechanics around gene-body nucleosomes. Furthermore, we show that local DNA mechanics affect transcription through TSS-proximal nucleosomes. Overall, this genome-scale map of DNA mechanics indicates a 'mechanical code' with broad functional implications.


Asunto(s)
Fenómenos Biomecánicos , ADN de Hongos/química , ADN de Hongos/genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Ensamble y Desensamble de Cromatina , Codón/genética , ADN de Hongos/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Docilidad , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitio de Iniciación de la Transcripción
4.
Mol Cell ; 68(5): 860-871.e7, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29220653

RESUMEN

DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD+-metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Daño del ADN , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias/enzimología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Regulación Alostérica , Sitios de Unión , Línea Celular Tumoral , ADN Helicasas/química , ADN Helicasas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Activación Enzimática , Humanos , Mutación , Neoplasias/genética , Neoplasias/patología , Conformación de Ácido Nucleico , Poli(ADP-Ribosa) Polimerasa-1/química , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli ADP Ribosilación , Poli Adenosina Difosfato Ribosa/química , Unión Proteica , Relación Estructura-Actividad , Factores de Tiempo
5.
Nature ; 556(7701): 386-390, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29643509

RESUMEN

In the eukaryotic nucleus, DNA is packaged in the form of nucleosomes, each of which comprises about 147 base pairs of DNA wrapped around a histone protein octamer. The position and histone composition of nucleosomes is governed by ATP-dependent chromatin remodellers1-3 such as the 15-subunit INO80 complex 4 . INO80 regulates gene expression, DNA repair and replication by sliding nucleosomes, the exchange of histone H2A.Z with H2A, and the positioning of + 1 and -1 nucleosomes at promoter DNA5-8. The structures and mechanisms of these remodelling reactions are currently unknown. Here we report the cryo-electron microscopy structure of the evolutionarily conserved core of the INO80 complex from the fungus Chaetomium thermophilum bound to a nucleosome, at a global resolution of 4.3 Å and with major parts at 3.7 Å. The INO80 core cradles one entire gyre of the nucleosome through multivalent DNA and histone contacts. An Rvb1/Rvb2 AAA+ ATPase heterohexamer is an assembly scaffold for the complex and acts as a 'stator' for the motor and nucleosome-gripping subunits. The Swi2/Snf2 ATPase motor binds to nucleosomal DNA at superhelical location -6, unwraps approximately 15 base pairs, disrupts the H2A-DNA contacts and is poised to pump entry DNA into the nucleosome. Arp5 and Ies6 bind superhelical locations -2 and -3 to act as a counter grip for the motor, on the other side of the H2A-H2B dimer. The Arp5 insertion domain forms a grappler element that binds the nucleosome dyad, connects the Arp5 actin-fold and entry DNA over a distance of about 90 Å and packs against histone H2A-H2B near the 'acidic patch'. Our structure together with biochemical data 8 suggests a unified mechanism for nucleosome sliding and histone editing by INO80. The motor is part of a macromolecular ratchet, persistently pumping entry DNA across the H2A-H2B dimer against the Arp5 grip until a large nucleosome translocation step occurs. The transient exposure of H2A-H2B by motor activity as well as differential recognition of H2A.Z and H2A may regulate histone exchange.


Asunto(s)
Adenosina Trifosfato/metabolismo , Chaetomium/enzimología , Ensamble y Desensamble de Cromatina , Microscopía por Crioelectrón , ADN Helicasas/ultraestructura , Complejos Multiproteicos/ultraestructura , Nucleosomas/metabolismo , Secuencia de Aminoácidos , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , ADN/química , ADN/metabolismo , ADN/ultraestructura , ADN Helicasas/química , ADN Helicasas/metabolismo , Proteínas Fúngicas , Histonas/química , Histonas/metabolismo , Histonas/ultraestructura , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Nucleosomas/química , Nucleosomas/ultraestructura , Unión Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
6.
Mol Cell ; 60(5): 742-754, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26626479

RESUMEN

Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1's function remained obscure; inherent dynamics of SSBs and PARP-1's multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1's signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodification in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.


Asunto(s)
Roturas del ADN de Cadena Simple , ADN/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , Reparación del ADN , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación de Ácido Nucleico , Poli(ADP-Ribosa) Polimerasa-1 , Pliegue de Proteína , Dedos de Zinc
7.
Mol Cell ; 46(6): 871-83, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22749400

RESUMEN

Alternative inclusion of exons increases the functional diversity of proteins. Among alternatively spliced exons, tissue-specific exons play a critical role in maintaining tissue identity. This raises the question of how tissue-specific protein-coding exons influence protein function. Here we investigate the structural, functional, interaction, and evolutionary properties of constitutive, tissue-specific, and other alternative exons in human. We find that tissue-specific protein segments often contain disordered regions, are enriched in posttranslational modification sites, and frequently embed conserved binding motifs. Furthermore, genes containing tissue-specific exons tend to occupy central positions in interaction networks and display distinct interaction partners in the respective tissues, and are enriched in signaling, development, and disease genes. Based on these findings, we propose that tissue-specific inclusion of disordered segments that contain binding motifs rewires interaction networks and signaling pathways. In this way, tissue-specific splicing may contribute to functional versatility of proteins and increases the diversity of interaction networks across tissues.


Asunto(s)
Mapas de Interacción de Proteínas , Proteínas/genética , Proteínas/metabolismo , Empalme Alternativo , Evolución Molecular , Exones , Humanos , Modelos Biológicos , Especificidad de Órganos , Empalme del ARN , Relación Estructura-Actividad
8.
Sci Adv ; 9(27): eadh2019, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37418517

RESUMEN

Transcription factor (TF) IIIC recruits RNA polymerase (Pol) III to most of its target genes. Recognition of intragenic A- and B-box motifs in transfer RNA (tRNA) genes by TFIIIC modules τA and τB is the first critical step for tRNA synthesis but is mechanistically poorly understood. Here, we report cryo-electron microscopy structures of the six-subunit human TFIIIC complex unbound and bound to a tRNA gene. The τB module recognizes the B-box via DNA shape and sequence readout through the assembly of multiple winged-helix domains. TFIIIC220 forms an integral part of both τA and τB connecting the two subcomplexes via a ~550-amino acid residue flexible linker. Our data provide a structural mechanism by which high-affinity B-box recognition anchors TFIIIC to promoter DNA and permits scanning for low-affinity A-boxes and TFIIIB for Pol III activation.


Asunto(s)
Factores de Transcripción TFIII , Humanos , Microscopía por Crioelectrón , Factores de Transcripción TFIII/genética , Transcripción Genética , ADN/metabolismo , ARN de Transferencia/genética
9.
Nat Struct Mol Biol ; 30(5): 640-649, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37106137

RESUMEN

The Swi2/Snf2 family transcription regulator Modifier of Transcription 1 (Mot1) uses adenosine triphosphate (ATP) to dissociate and reallocate the TATA box-binding protein (TBP) from and between promoters. To reveal how Mot1 removes TBP from TATA box DNA, we determined cryogenic electron microscopy structures that capture different states of the remodeling reaction. The resulting molecular video reveals how Mot1 dissociates TBP in a process that, intriguingly, does not require DNA groove tracking. Instead, the motor grips DNA in the presence of ATP and swings back after ATP hydrolysis, moving TBP to a thermodynamically less stable position on DNA. Dislodged TBP is trapped by a chaperone element that blocks TBP's DNA binding site. Our results show how Swi2/Snf2 proteins can remodel protein-DNA complexes through DNA bending without processive DNA tracking and reveal mechanistic similarities to RNA gripping DEAD box helicases and RIG-I-like immune sensors.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Factores Asociados con la Proteína de Unión a TATA , Adenosina Trifosfatasas/metabolismo , Factores de Transcripción/metabolismo , TATA Box , Proteína de Unión a TATA-Box/química , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN/química , Adenosina Trifosfato/metabolismo , Factores Asociados con la Proteína de Unión a TATA/química
10.
Science ; 381(6655): 313-319, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37384673

RESUMEN

Loss of H2A-H2B histone dimers is a hallmark of actively transcribed genes, but how the cellular machinery functions in the context of noncanonical nucleosomal particles remains largely elusive. In this work, we report the structural mechanism for adenosine 5'-triphosphate-dependent chromatin remodeling of hexasomes by the INO80 complex. We show how INO80 recognizes noncanonical DNA and histone features of hexasomes that emerge from the loss of H2A-H2B. A large structural rearrangement switches the catalytic core of INO80 into a distinct, spin-rotated mode of remodeling while its nuclear actin module remains tethered to long stretches of unwrapped linker DNA. Direct sensing of an exposed H3-H4 histone interface activates INO80, independently of the H2A-H2B acidic patch. Our findings reveal how the loss of H2A-H2B grants remodelers access to a different, yet unexplored layer of energy-driven chromatin regulation.


Asunto(s)
Chaetomium , Ensamble y Desensamble de Cromatina , Cromatina , Histonas , Nucleosomas , Cromatina/química , ADN/química , Histonas/química , Nucleosomas/química , Microscopía por Crioelectrón , Chaetomium/química , Chaetomium/ultraestructura
11.
Nat Commun ; 13(1): 6569, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323657

RESUMEN

Single-stranded breaks (SSBs) are the most frequent DNA lesions threatening genomic integrity. A highly kinked DNA structure in complex with human PARP-1 domains led to the proposal that SSB sensing in Eukaryotes relies on dynamics of both the broken DNA double helix and PARP-1's multi-domain organization. Here, we directly probe this process at the single-molecule level. Quantitative smFRET and structural ensemble calculations reveal how PARP-1's N-terminal zinc fingers convert DNA SSBs from a largely unperturbed conformation, via an intermediate state into the highly kinked DNA conformation. Our data suggest an induced fit mechanism via a multi-domain assembly cascade that drives SSB sensing and stimulates an interplay with the scaffold protein XRCC1 orchestrating subsequent DNA repair events. Interestingly, a clinically used PARP-1 inhibitor Niraparib shifts the equilibrium towards the unkinked DNA conformation, whereas the inhibitor EB47 stabilizes the kinked state.


Asunto(s)
Roturas del ADN de Cadena Simple , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Reparación del ADN , Daño del ADN , ADN/metabolismo
12.
Nat Commun ; 13(1): 5635, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163468

RESUMEN

In mitosis, the augmin complex binds to spindle microtubules to recruit the γ-tubulin ring complex (γ-TuRC), the principal microtubule nucleator, for the formation of branched microtubules. Our understanding of augmin-mediated microtubule branching is hampered by the lack of structural information on the augmin complex. Here, we elucidate the molecular architecture and conformational plasticity of the augmin complex using an integrative structural biology approach. The elongated structure of the augmin complex is characterised by extensive coiled-coil segments and comprises two structural elements with distinct but complementary functions in γ-TuRC and microtubule binding, linked by a flexible hinge. The augmin complex is recruited to microtubules via a composite microtubule binding site comprising a positively charged unordered extension and two calponin homology domains. Our study provides the structural basis for augmin function in branched microtubule formation, decisively fostering our understanding of spindle formation in mitosis.


Asunto(s)
Huso Acromático , Tubulina (Proteína) , Proteínas Asociadas a Microtúbulos/química , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
13.
Science ; 376(6597): 1087-1094, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35653469

RESUMEN

Structural maintenance of chromosomes (SMC) protein complexes structure genomes by extruding DNA loops, but the molecular mechanism that underlies their activity has remained unknown. We show that the active condensin complex entraps the bases of a DNA loop transiently in two separate chambers. Single-molecule imaging and cryo-electron microscopy suggest a putative power-stroke movement at the first chamber that feeds DNA into the SMC-kleisin ring upon adenosine triphosphate binding, whereas the second chamber holds on upstream of the same DNA double helix. Unlocking the strict separation of "motor" and "anchor" chambers turns condensin from a one-sided into a bidirectional DNA loop extruder. We conclude that the orientation of two topologically bound DNA segments during the SMC reaction cycle determines the directionality of DNA loop extrusion.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Unión al ADN , ADN , Complejos Multiproteicos , Adenosina Trifosfatasas/química , Microscopía por Crioelectrón , ADN/química , Proteínas de Unión al ADN/química , Complejos Multiproteicos/química , Conformación de Ácido Nucleico , Imagen Individual de Molécula
14.
Nat Commun ; 13(1): 473, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35078983

RESUMEN

The gamma-tubulin ring complex (γ-TuRC) is the principal microtubule nucleation template in vertebrates. Recent cryo-EM reconstructions visualized the intricate quaternary structure of the γ-TuRC, containing more than thirty subunits, raising fundamental questions about γ-TuRC assembly and the role of actin as an integral part of the complex. Here, we reveal the structural mechanism underlying modular γ-TuRC assembly and identify a functional role of actin in microtubule nucleation. During γ-TuRC assembly, a GCP6-stabilized core comprising GCP2-3-4-5-4-6 is expanded by stepwise recruitment, selective stabilization and conformational locking of four pre-formed GCP2-GCP3 units. Formation of the lumenal bridge specifies incorporation of the terminal GCP2-GCP3 unit and thereby leads to closure of the γ-TuRC ring in a left-handed spiral configuration. Actin incorporation into the complex is not relevant for γ-TuRC assembly and structural integrity, but determines γ-TuRC geometry and is required for efficient microtubule nucleation and mitotic chromosome alignment in vivo.


Asunto(s)
Actinas/química , Microscopía por Crioelectrón/métodos , Proteínas Asociadas a Microtúbulos/química , Centro Organizador de los Microtúbulos/química , Microtúbulos/química , Tubulina (Proteína)/química , Actinas/metabolismo , Línea Celular , Humanos , Proteínas Asociadas a Microtúbulos/aislamiento & purificación , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Tubulina (Proteína)/metabolismo
15.
Sci Adv ; 8(49): eadd3189, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490333

RESUMEN

The nucleosomal landscape of chromatin depends on the concerted action of chromatin remodelers. The INO80 remodeler specifically places nucleosomes at the boundary of gene regulatory elements, which is proposed to be the result of an ATP-dependent nucleosome sliding activity that is regulated by extranucleosomal DNA features. Here, we use cryo-electron microscopy and functional assays to reveal how INO80 binds and is regulated by extranucleosomal DNA. Structures of the regulatory A-module bound to DNA clarify the mechanism of linker DNA binding. The A-module is connected to the motor unit via an HSA/post-HSA lever element to chemomechanically couple the motor and linker DNA sensing. Two notable sites of curved DNA recognition by coordinated action of the four actin/actin-related proteins and the motor suggest how sliding by INO80 can be regulated by extranucleosomal DNA features. Last, the structures clarify the recruitment of YY1/Ies4 subunits and reveal deep architectural similarities between the regulatory modules of INO80 and SWI/SNF complexes.

16.
Open Biol ; 11(2): 200325, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33529551

RESUMEN

Cryo-electron microscopy recently resolved the structure of the vertebrate γ-tubulin ring complex (γ-TuRC) purified from Xenopus laevis egg extract and human cells to near-atomic resolution. These studies clarified the arrangement and stoichiometry of γ-TuRC components and revealed that one molecule of actin and the small protein MZT1 are embedded into the complex. Based on this structural census of γ-TuRC core components, we developed a recombinant expression system for the reconstitution and purification of human γ-TuRC from insect cells. The recombinant γ-TuRC recapitulates the structure of purified native γ-TuRC and has similar functional properties in terms of microtubule nucleation and minus end capping. This recombinant system is a central step towards deciphering the activation mechanisms of the γ-TuRC and the function of individual γ-TuRC core components.


Asunto(s)
Tubulina (Proteína)/química , Animales , Humanos , Microtúbulos/química , Microtúbulos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Células Sf9 , Imagen Individual de Molécula , Spodoptera , Porcinos , Tubulina (Proteína)/metabolismo , Xenopus
17.
Nat Commun ; 12(1): 3232, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050140

RESUMEN

Arrays of regularly spaced nucleosomes dominate chromatin and are often phased by alignment to reference sites like active promoters. How the distances between nucleosomes (spacing), and between phasing sites and nucleosomes are determined remains unclear, and specifically, how ATP-dependent chromatin remodelers impact these features. Here, we used genome-wide reconstitution to probe how Saccharomyces cerevisiae ATP-dependent remodelers generate phased arrays of regularly spaced nucleosomes. We find that remodelers bear a functional element named the 'ruler' that determines spacing and phasing in a remodeler-specific way. We use structure-based mutagenesis to identify and tune the ruler element residing in the Nhp10 and Arp8 modules of the INO80 remodeler complex. Generally, we propose that a remodeler ruler regulates nucleosome sliding direction bias in response to (epi)genetic information. This finally conceptualizes how remodeler-mediated nucleosome dynamics determine stable steady-state nucleosome positioning relative to other nucleosomes, DNA bound factors, DNA ends and DNA sequence elements.


Asunto(s)
Ensamble y Desensamble de Cromatina , Nucleosomas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/aislamiento & purificación , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Epigénesis Genética , Genoma Fúngico/genética , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/aislamiento & purificación , Proteínas del Grupo de Alta Movilidad/metabolismo , Histonas/genética , Histonas/metabolismo , Larva/genética , Larva/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/aislamiento & purificación , Proteínas de Microfilamentos/metabolismo , Mutagénesis , Nucleosomas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuenciación Completa del Genoma
18.
Nat Commun ; 12(1): 3231, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050142

RESUMEN

The fundamental molecular determinants by which ATP-dependent chromatin remodelers organize nucleosomes across eukaryotic genomes remain largely elusive. Here, chromatin reconstitutions on physiological, whole-genome templates reveal how remodelers read and translate genomic information into nucleosome positions. Using the yeast genome and the multi-subunit INO80 remodeler as a paradigm, we identify DNA shape/mechanics encoded signature motifs as sufficient for nucleosome positioning and distinct from known DNA sequence preferences of histones. INO80 processes such information through an allosteric interplay between its core- and Arp8-modules that probes mechanical properties of nucleosomal and linker DNA. At promoters, INO80 integrates this readout of DNA shape/mechanics with a readout of co-evolved sequence motifs via interaction with general regulatory factors bound to these motifs. Our findings establish a molecular mechanism for robust and yet adjustable +1 nucleosome positioning and, more generally, remodelers as information processing hubs that enable active organization and allosteric regulation of the first level of chromatin.


Asunto(s)
Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulación Alostérica/genética , Animales , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma Fúngico , Histonas/genética , Histonas/aislamiento & purificación , Humanos , Larva/genética , Larva/metabolismo , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
19.
Curr Opin Struct Biol ; 64: 134-144, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32771531

RESUMEN

ATP-dependent chromatin remodelers are enigmatic macromolecular machines that govern the arrangement and composition of nucleosomes across eukaryotic genomes. Here, we review the recent breakthrough provided by cryo-electron microscopy that reveal the first high-resolution insights into all four families of remodelers. We highlight the emerging structural and mechanistic principles with a particular focus on multi-subunit SWI/SNF and INO80/SWR1 complexes. A conserved architecture comprising a motor, rotor, stator and grip suggests a unifying mechanism for how stepwise DNA translocation enables large scale reconfigurations of nucleosomes. A molecular circuitry involving the nuclear actin containing module establishes a framework for understanding allosteric regulation. Remodelers emerge as programable hubs that enable differential processing of genetic and epigenetic information in response to the physiological state of a cell.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina , Microscopía por Crioelectrón , ADN , Nucleosomas
20.
Structure ; 28(1): 83-95.e5, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31740028

RESUMEN

Tel1 (ATM in humans) is a large kinase that resides in the cell in an autoinhibited dimeric state and upon activation orchestrates the cellular response to DNA damage. We report the structure of an endogenous Tel1 dimer from Chaetomium thermophilum. Major parts are at 2.8 Å resolution, including the kinase active site with ATPγS bound, and two different N-terminal solenoid conformations are at 3.4 Å and 3.6 Å, providing a side-chain model for 90% of the Tel1 polypeptide. We show that the N-terminal solenoid has DNA binding activity, but that its movements are not coupled to kinase activation. Although ATPγS and catalytic residues are poised for catalysis, the kinase resides in an autoinhibited state. The PIKK regulatory domain acts as a pseudo-substrate, blocking direct access to the site of catalysis. The structure allows mapping of human cancer mutations and defines mechanisms of autoinhibition at near-atomic resolution.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Chaetomium/enzimología , Adenosina Trifosfato/metabolismo , Dominio Catalítico , Chaetomium/química , ADN/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Homeostasis , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA