Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Hum Genet ; 94(1): 129-34, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24387992

RESUMEN

APOA5 c.*158C>T (rs2266788), located in the 3' UTR, belongs to APOA5 haplotype 2 (APOA5*2), which is strongly associated with plasma triglyceride levels and modulates the occurrence of both moderate and severe hypertriglyceridemia. Individuals with APOA5*2 display reduced APOA5 expression at the posttranscriptional level. However, the functionality of this haplotype remains unclear. We hypothesized that the hypertriglyceridemic effects of APOA5*2 could involve miRNA regulation in the APOA5 3' UTR. Bioinformatic studies have identified the creation of a potential miRNA binding site for liver-expressed miR-485-5p (MIRN485-5p) in the mutant APOA5 3' UTR with the c.*158C allele. In human embryonic kidney 293T (HEK293T) cells cotransfected with an APOA5 3' UTR luciferase reporter vector and a miR485-5p precursor, c.*158C allele expression was significantly decreased. Moreover, in HuH-7 cells endogenously expressing miR-485-5p, we observed that luciferase activity was significantly lower in the presence of the c.*158C allele than in the presence of the c.*158T allele, which was completely reversed by a miR-485-5p inhibitor. We demonstrated that the rare c.*158C APOA5 allele creates a functional target site for liver-expressed miR-485-5p. Therefore, we propose that the well-documented hypertriglyceridemic effect of APOA5*2 involves an APOA5 posttranscriptional downregulation mediated by miR-485-5p.


Asunto(s)
Regiones no Traducidas 3'/genética , Apolipoproteínas A/genética , Variación Genética , MicroARNs/genética , Triglicéridos/sangre , Alelos , Apolipoproteína A-V , Apolipoproteínas A/metabolismo , Sitios de Unión , Biología Computacional , Regulación hacia Abajo , Células HEK293 , Haplotipos , Humanos , Hígado/metabolismo , Luciferasas/metabolismo , MicroARNs/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 33(8): 1803-11, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23788762

RESUMEN

OBJECTIVE: Endosomal signature phospholipid bis(monoacylglycero)phosphate (BMP) has been involved in the regulation of cellular cholesterol homeostasis. Accumulation of BMP is a hallmark of lipid storage disorders and was recently reported as a noticeable feature of oxidized low-density lipoprotein-laden macrophages. This study was designed to delineate the consequences of macrophage BMP accumulation on intracellular cholesterol distribution, metabolism, and efflux and to unravel the underlying molecular mechanisms. APPROACH AND RESULTS: We have developed an experimental design to specifically increase BMP content in RAW 264.7 macrophages. After BMP accumulation, cell cholesterol distribution was markedly altered, despite no change in low-density lipoprotein uptake and hydrolysis, cholesterol esterification, or total cell cholesterol content. The expression of cholesterol-regulated genes sterol regulatory element-binding protein 2 and hydroxymethylglutaryl-coenzyme A reductase was decreased by 40%, indicative of an increase of endoplasmic reticulum-associated cholesterol. Cholesterol delivery to plasma membrane was reduced as evidenced by the 20% decrease of efflux by cyclodextrin. Functionally, BMP accumulation reduced cholesterol efflux to both apolipoprotein A1 and high-density lipoprotein by 40% and correlated with a 40% decrease in mRNA contents of ATP-binding cassette transporter A1, ATP-binding cassette transporter G1, and liver-X receptor α and ß. Foam cell formation induced by oxidized low-density lipoprotein exposure was exacerbated in BMP-enriched cells. CONCLUSIONS: The present work shows for the first time a strong functional link between BMP and cholesterol-regulating genes involved in both intracellular metabolism and efflux. We propose that accumulation of cellular BMP might contribute to the deregulation of cholesterol homeostasis in atheromatous macrophages.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , LDL-Colesterol/metabolismo , Lipoproteínas/metabolismo , Lisofosfolípidos/metabolismo , Macrófagos/metabolismo , Monoglicéridos/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Animales , Línea Celular , Endosomas/metabolismo , Células Espumosas/metabolismo , Expresión Génica/fisiología , Homeostasis/fisiología , Lipoproteínas/genética , Lipoproteínas LDL/metabolismo , Receptores X del Hígado , Ratones , Receptores Nucleares Huérfanos/genética , Placa Aterosclerótica/metabolismo
3.
Cell Commun Signal ; 11: 55, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23915343

RESUMEN

mTOR is a major actor of skeletal muscle mass regulation in situations of atrophy or hypertrophy. It is established that Phospholipase D (PLD) activates mTOR signaling, through the binding of its product phosphatidic acid (PA) to mTOR protein. An influence of PLD on muscle cell size could thus be suspected. We explored the consequences of altered expression and activity of PLD isoforms in differentiated L6 myotubes. Inhibition or down-regulation of the PLD1 isoform markedly decreased myotube size and muscle specific protein content. Conversely, PLD1 overexpression induced muscle cell hypertrophy, both in vitro in myotubes and in vivo in mouse gastrocnemius. In the presence of atrophy-promoting dexamethasone, PLD1 overexpression or addition of exogenous PA protected myotubes against atrophy. Similarly, exogenous PA protected myotubes against TNFα-induced atrophy. Moreover, the modulation of PLD expression or activity in myotubes showed that PLD1 negatively regulates the expression of factors involved in muscle protein degradation, such as the E3-ubiquitin ligases Murf1 and Atrogin-1, and the Foxo3 transcription factor. Inhibition of mTOR by PP242 abolished the positive effects of PLD1 on myotubes, whereas modulating PLD influenced the phosphorylation of both S6K1 and Akt, which are respectively substrates of mTORC1 and mTORC2 complexes. These observations suggest that PLD1 acts through the activation of both mTORC1 and mTORC2 to induce positive trophic effects on muscle cells. This pathway may offer interesting therapeutic potentialities in the treatment of muscle wasting.


Asunto(s)
Complejos Multiproteicos/metabolismo , Fibras Musculares Esqueléticas/citología , Fosfolipasa D/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Tamaño de la Célula , Dexametasona , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos BALB C , Atrofia Muscular/inducido químicamente , Atrofia Muscular/metabolismo , Ácidos Fosfatidicos/farmacología , Factor de Necrosis Tumoral alfa
4.
Physiol Genomics ; 34(3): 327-37, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18559965

RESUMEN

In this study we have identified the target genes of sterol regulatory element binding protein (SREBP)-1a and SREBP-1c in primary cultures of human skeletal muscle cells, using adenoviral vectors expressing the mature nuclear form of human SREBP-1a or SREBP-1c combined with oligonucleotide microarrays. Overexpression of SREBP-1a led to significant changes in the expression of 1,315 genes (655 upregulated and 660 downregulated), whereas overexpression of SREBP-1c modified the mRNA level of 514 genes (310 upregulated and 204 downregulated). Gene ontology analysis indicated that in human muscle cells SREBP-1a and -1c are involved in the regulation of a large number of genes that are at the crossroads of different functional pathways, several of which are not directly connected with cholesterol and lipid metabolism. Six hundred fifty-two of all genes identified to be differentially regulated on SREBP overexpression had a sterol regulatory element (SRE) motif in their promoter sequences. Among these, 429 were specifically regulated by SREBP-1a, 69 by SREBP-1c, and 154 by both 1a and 1c. Because both isoforms recognize the same binding motif, we determined whether some of these functional differences could depend on the environment of the SRE motifs in the promoters. Results from promoter analysis showed that different combinations of transcription factor binding sites around the SRE binding motifs may determine regulatory networks of transcription that could explain the superposition of lipid and cholesterol metabolism with various other pathways involved in adaptive responses to stress like hypoxia and heat shock, or involvement in the immune response.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Músculo Esquelético/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Secuencia de Bases , Extractos Celulares , Células Cultivadas , Inmunoprecipitación de Cromatina , Femenino , Glucosa/metabolismo , Glucógeno/biosíntesis , Humanos , Immunoblotting , Masculino , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/metabolismo , Oxidación-Reducción , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
5.
PLoS One ; 13(5): e0196666, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29723239

RESUMEN

BACKGROUND: Among the potential factors which may contribute to the development and perpetuation of atrial fibrillation, dysregulation of miRNAs has been suggested. Thus in this study, we have quantified the basal expressions of 662 mature human miRNAs in left atrium (LA) from patients undergoing cardiac surgery for valve repair, suffering or not from atrial fibrillation (AF) by using TaqMan® Low Density arrays (v2.0). RESULTS: Among the 299 miRNAs expressed in all patients, 42 miRNAs had altered basal expressions in patients with AF. Binding-site predictions with Targetscan (conserved sites among species) indicated that the up- and down-regulated miRNAs controlled respectively 3,310 and 5,868 genes. To identify the most relevant cellular functions under the control of the altered miRNAs, we focused on the 100 most targeted genes of each list and identified 5 functional protein-protein networks among these genes. Up-regulated networks were involved in synchronisation of circadian rythmicity and in the control of the AKT/PKC signaling pathway (i.e., proliferation/adhesion). Down-regulated networks were the IGF-1 pathway and TGF-beta signaling pathway and a network involved in RNA-mediated gene silencing, suggesting for the first time that alteration of miRNAs in AF would also perturbate the whole miRNA machinery. Then we crossed the list of miRNA predicted genes, and the list of mRNAs altered in similar patients suffering from AF and we found that respectively 44.5% and 55% of the up- and down-regulated mRNA are predicted to be conserved targets of the altered miRNAs (at least one binding site in 3'-UTR). As they were involved in the same biological processes mentioned above, these data demonstrated that a great part of the transcriptional defects previously published in LA from AF patients are likely due to defects at the post-transcriptional level and involved the miRNAs. CONCLUSIONS: Our stringent analysis permitted us to identify highly targeted protein-protein networks under the control of miRNAs in LA and, among them, to highlight those specifically affected in AF patients with altered miRNA signature. Further studies are now required to determine whether alterations of miRNA levels in AF pathology are causal or represent an adaptation to prevent cardiac electrical and structural remodeling.


Asunto(s)
Fibrilación Atrial/etiología , Atrios Cardíacos/química , Enfermedades de las Válvulas Cardíacas/genética , MicroARNs/análisis , Transcriptoma , Regiones no Traducidas 3' , Edad de Inicio , Anciano , Fibrilación Atrial/genética , Ritmo Circadiano/genética , Simulación por Computador , Susceptibilidad a Enfermedades , Femenino , Redes Reguladoras de Genes , Silenciador del Gen , Células HEK293 , Atrios Cardíacos/patología , Enfermedades de las Válvulas Cardíacas/complicaciones , Enfermedades de las Válvulas Cardíacas/metabolismo , Enfermedades de las Válvulas Cardíacas/cirugía , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Masculino , MicroARNs/biosíntesis , MicroARNs/genética , Persona de Mediana Edad , Modelos Biológicos , Tamaño de los Órganos , Transducción de Señal/genética , Transfección
6.
Biochem J ; 400(1): 179-88, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16831124

RESUMEN

In the present study, we aimed to decipher the mechanisms involved in the transcriptional effect of insulin on the SREBP-1c specific promoter of the human srebf-1 gene. Using luciferase reporter gene constructs in HEK-293 cells (human embryonic kidney cells), we demonstrated that the full effect of insulin requires the presence of SREs (sterol response elements) in the proximal region of the promoter. Furthermore, insulin increases the binding of SREBP-1 (sterol-regulatory-element-binding protein-1) to this promoter region in chromatin immunoprecipitation assay. We also found that the nuclear receptors LXRs (liver X receptors) strongly activate SREBP-1c gene expression and identified the LXRE (LXR-response element) involved in this effect. However, our results suggested that these LXREs do not play a major role in the response to insulin. Finally, using expression vectors and adenoviruses allowing ectopic overexpressions of the human mature forms of SREBP-1a or SREBP-1c, we demonstrated the direct role of SREBP-1 in the control of SREBP-1c gene expression in human skeletal-muscle cells. Altogether, these results strongly suggest that the SREBP-1 transcription factors are the main mediators of insulin action on SREBP-1c expression in human tissues.


Asunto(s)
Insulina/farmacología , Regiones Promotoras Genéticas/genética , Elementos de Respuesta/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Sitios de Unión/genética , Línea Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Insulina/administración & dosificación , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Mutación/genética , Perfusión , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
7.
Physiol Rep ; 4(17)2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27597765

RESUMEN

This study investigated miR-148b as a potential physiological actor of physical inactivity-induced effects in skeletal muscle. By using animal and human protocols, we demonstrated that the early phase of transition toward inactivity was associated with an increase in muscle miR-148b content, which triggered the downregulation of NRAS and ROCK1 target genes. Using human myotubes, we demonstrated that overexpression of miR-148b decreased NRAS and ROCK1 protein levels, and PKB phosphorylation and glucose uptake in response to insulin. Increase in muscle miR-148b content might thus participate in the decrease in insulin sensitivity at the whole body level during the transition toward physical inactivity.


Asunto(s)
Ejercicio Físico/fisiología , Resistencia a la Insulina/fisiología , Insulina/metabolismo , MicroARNs/metabolismo , Músculo Esquelético/fisiología , Adulto , Animales , Femenino , GTP Fosfohidrolasas/metabolismo , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , Persona de Mediana Edad , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fosforilación , Conducta Sedentaria , Quinasas Asociadas a rho/metabolismo
8.
Atherosclerosis ; 246: 280-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26820803

RESUMEN

BACKGROUND: Lipoprotein lipase (LPL) is a key enzyme in triglyceride (TG) metabolism. LPL gene single nucleotide polymorphisms (SNPs) are associated with TG concentrations however the functionality of many of these SNPs remains poorly understood. MicroRNAs (miR) exert post-transcriptional down-regulation and their target sequence on the 3'UTR may be altered by SNPs. We therefore investigated whether LPL 3'UTR SNPs could modulate plasma TG concentration through the alteration of miR binding-sites. METHODS AND RESULTS: We performed genetic association studies of LPL 3'UTR SNPs with TG concentrations in 271 type 2 diabetic patients and in general population samples (2997 individuals). A specific LPL haplotype (Hap4) was associated with lower plasma TG concentration (TG-0.18, IC95% [-0.30, -0.07] mmol/L or logTG-0.13, IC95% [-0.18, -0.08], p = 4.77·10(-8)) in the meta-analysis. Hap4 comprises seven 3'UTR SNP minor alleles and p.Ser474Ter (rs328) a well-documented nonsense mutation associated with low TG concentration although by an unknown mechanism so far. Bio-informatic studies identified several putative miRNA binding-sites on the wild-type Hap1 haplotype, lost on Hap4. Functional validation performed in HEK-293T cells using luciferase expression constructs with various LPL 3'UTR allele combinations demonstrated a binding of miR-29, miR-1277 and miR-410 on Hap1, lost on Hap4. This loss of specific miR binding-site in presence of Hap4 was independent of the allelic variation of p.Ser474Ter (rs328). CONCLUSIONS: We report the regulation of LPL by the miR-29, miR-1277 and miR-410 that is lost in presence of Hap4, a specific LPL TG-lowering haplotype. Consequently p.Ser474Ter association with TG concentration could be at least partially explained by its strong linkage disequilibrium with these functional 3'UTR SNPs.


Asunto(s)
Hipertrigliceridemia/genética , Lipoproteína Lipasa/genética , MicroARNs/genética , Polimorfismo de Nucleótido Simple , Triglicéridos/sangre , Regiones no Traducidas 3' , Sitios de Unión , Biomarcadores/sangre , Estudios de Casos y Controles , Biología Computacional , Bases de Datos Genéticas , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Regulación Enzimológica de la Expresión Génica , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HEK293 , Haplotipos , Humanos , Hipertrigliceridemia/sangre , Hipertrigliceridemia/diagnóstico , Hipertrigliceridemia/enzimología , Desequilibrio de Ligamiento , Lipoproteína Lipasa/metabolismo , MicroARNs/metabolismo , Fenotipo , Factores de Riesgo , Transfección
9.
Cancer Cell ; 28(5): 569-581, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26555173

RESUMEN

Tumorigenesis is associated with increased glucose consumption and lipogenesis, but how these pathways are interlinked is unclear. Here, we delineate a pathway in which EGFR signaling, by increasing glucose uptake, promotes N-glycosylation of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and consequent activation of SREBP-1, an ER-bound transcription factor with central roles in lipid metabolism. Glycosylation stabilizes SCAP and reduces its association with Insig-1, allowing movement of SCAP/SREBP to the Golgi and consequent proteolytic activation of SREBP. Xenograft studies reveal that blocking SCAP N-glycosylation ameliorates EGFRvIII-driven glioblastoma growth. Thus, SCAP acts as key glucose-responsive protein linking oncogenic signaling and fuel availability to SREBP-dependent lipogenesis. Targeting SCAP N-glycosylation may provide a promising means of treating malignancies and metabolic diseases.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Western Blotting , Línea Celular , Femenino , Glucosa/metabolismo , Glucosa/farmacología , Glicosilación/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Células MCF-7 , Proteínas de la Membrana/genética , Ratones Desnudos , Microscopía Confocal , Neoplasias/genética , Neoplasias/patología , Unión Proteica , Interferencia de ARN , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Análisis de Supervivencia , Trasplante Heterólogo , Carga Tumoral/genética
10.
Cell Cycle ; 13(1): 78-89, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24196440

RESUMEN

It has recently been established that exosomes can mediate intercellular cross-talk under normal and pathological conditions through the transfer of specific miRNAs. As muscle cells secrete exosomes, we addressed the question of whether skeletal muscle (SkM) exosomes contained specific miRNAs, and whether they could act as "endocrine signals" during myogenesis. We compared the miRNA repertoires found in exosomes released from C2C12 myoblasts and myotubes and found that 171 and 182 miRNAs were exported into exosomes from myoblasts and myotubes, respectively. Interestingly, some miRNAs were expressed at higher levels in exosomes than in their donor cells and vice versa, indicating a selectivity in the incorporation of miRNAs into exosomes. Moreover miRNAs from C2C12 exosomes were regulated during myogenesis. The predicted target genes of regulated exosomal miRNAs are mainly involved in the control of important signaling pathways for muscle cell differentiation (e.g., Wnt signaling pathway). We demonstrated that exosomes from myotubes can transfer small RNAs (C. elegans miRNAs and siRNA) into myoblasts. Moreover, we present evidence that exosome miRNAs secreted by myotubes are functionally able to silence Sirt1 in myoblasts. As Sirt1 regulates muscle gene expression and differentiation, our results show that myotube-exosome miRNAs could contribute to the commitment of myoblasts in the process of differentiation. Until now, myokines in muscle cell secretome provided a conceptual basis for communication between muscles. Here, we show that miRNA exosomal transfer would be a powerful means by which gene expression is orchestrated to regulate SkM metabolic homeostasis.


Asunto(s)
Diferenciación Celular/genética , MicroARNs/biosíntesis , Mioblastos/metabolismo , Sirtuinas/biosíntesis , Animales , Exosomas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Homeostasis , Ratones , MicroARNs/clasificación , MicroARNs/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Mioblastos/citología , Sirtuinas/genética
11.
PLoS One ; 7(11): e50878, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226416

RESUMEN

SREBP-1 are ubiquitously expressed transcription factors, strongly expressed in lipogenic tissues where they regulate several metabolic processes like fatty acid synthesis. In skeletal muscle, SREBP-1 proteins regulate the expression of hundreds of genes, and we previously showed that their overexpression induced muscle atrophy together with a combined lack of expression of myogenic regulatory factors. Here we present evidences that SREBP-1 regulate muscle protein synthesis through the downregulation of the expression of MYOD1, MYOG and MEF2C factors. In myotubes overexpressing SREBP-1, restoring the expression of myogenic factors prevented atrophy and rescued protein synthesis, without affecting SREBP-1 action on atrogenes and proteolysis. Our results point out the roles of MRFs in the maintenance of the protein content and cell size in adult muscle fibre, and contribute to decipher the mechanisms by which SREBP-1 regulate muscle mass.


Asunto(s)
Tamaño de la Célula , Músculo Esquelético/patología , Factores Reguladores Miogénicos/metabolismo , Biosíntesis de Proteínas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Humanos , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción MEF2 , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Proteína MioD/metabolismo , Miogenina/metabolismo , Proteolisis , ARN Interferente Pequeño/metabolismo , Sarcómeros/metabolismo
12.
PLoS One ; 7(9): e43490, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984430

RESUMEN

Sirtuin 1 (SIRT1), a NAD(+)-dependent protein deacetylase, has emerged as a main determinant of whole body homeostasis in mammals by regulating a large spectrum of transcriptional regulators in metabolically relevant tissue such as liver, adipose tissue and skeletal muscle. Sterol regulatory element binding protein (SREBP)-1c is a transcription factor that controls the expression of genes related to fatty acid and triglyceride synthesis in tissues with high lipid synthesis rates such as adipose tissue and liver. Previous studies indicate that SIRT1 can regulate the expression and function of SREBP-1c in liver. In the present study, we determined whether SIRT1 regulates SREBP-1c expression in skeletal muscle. SREBP-1c mRNA and protein levels were decreased in the gastrocnemius muscle of mice harboring deletion of the catalytic domain of SIRT1 (SIRT1(Δex4/Δex4) mice). By contrast, adenoviral expression of SIRT1 in human myotubes increased SREBP-1c mRNA and protein levels. Importantly, SREBP-1c promoter transactivation, which was significantly increased in response to SIRT1 overexpression by gene electrotransfer in skeletal muscle, was completely abolished when liver X receptor (LXR) response elements were deleted. Finally, our in vivo data from SIRT1(Δex4/Δex4) mice and in vitro data from human myotubes overexpressing SIRT1 show that SIRT1 regulates LXR acetylation in skeletal muscle cells. This suggests a possible mechanism by which the regulation of SREBP-1c gene expression by SIRT1 may require the deacetylation of LXR transcription factors.


Asunto(s)
Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Sirtuina 1/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Acetilación , Animales , Humanos , Receptores X del Hígado , Masculino , Ratones , Células Musculares/metabolismo , Músculo Esquelético/citología , Regiones Promotoras Genéticas/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Activación Transcripcional/genética
13.
Mol Cell Biol ; 30(5): 1182-98, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20028734

RESUMEN

The role of the transcription factors sterol regulatory element binding protein 1a (SREBP-1a) and SREBP-1c in the regulation of cholesterol and fatty acid metabolism has been well studied; however, little is known about their specific function in muscle. In the present study, analysis of recent microarray data from muscle cells overexpressing SREBP1 suggested that they may play a role in the regulation of myogenesis. We then demonstrated that SREBP-1a and -1c inhibit myoblast-to-myotube differentiation and also induce in vivo and in vitro muscle atrophy. Furthermore, we have identified the transcriptional repressors BHLHB2 and BHLHB3 as mediators of these effects of SREBP-1a and -1c in muscle. Both repressors are SREBP-1 target genes, and they affect the expression of numerous genes involved in the myogenic program. Our findings identify a new role for SREBP-1 transcription factors in muscle, thus linking the control of muscle mass to metabolic pathways.


Asunto(s)
Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Células Cultivadas , Regulación hacia Abajo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Atrofia Muscular/etiología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA