Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(16): e202400422, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38380500

RESUMEN

An overreactive stress granule (SG) pathway and long-lived, stable SGs formation are thought to participate in the progress of neurodegenerative diseases (NDs). To understand if and how SGs contribute to disorders of neurotransmitter release in NDs, we examined the interaction between extracellular isolated SGs and vesicles. Amperometry shows that the vesicular content increases and dynamics of vesicle opening slow down after vesicles are treated with SGs, suggesting larger vesicles are formed. Data from transmission electron microscopy (TEM) clearly shows that a portion of large dense-core vesicles (LDCVs) with double/multiple cores appear, thus confirming that SGs induce homotypic fusion between LDCVs. This might be a protective step to help cells to survive following high oxidative stress. A hypothetical mechanism is proposed whereby enriched mRNA or protein in the shell of SGs is likely to bind intrinsically disordered protein (IDP) regions of vesicle associated membrane protein (VAMP) driving a disrupted membrane between two closely buddled vesicles to fuse with each other to form double-core vesicles. Our results show that SGs induce homotypic fusion of LDCVs, providing better understanding of how SGs intervene in pathological processes and opening a new direction to investigations of SGs involved neurodegenerative disease.


Asunto(s)
Catecolaminas , Enfermedades Neurodegenerativas , Humanos , Catecolaminas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Gránulos de Estrés , Microscopía Electrónica , Microscopía Electrónica de Transmisión
2.
Angew Chem Int Ed Engl ; 63(17): e202316551, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38411372

RESUMEN

Single-entity electrochemistry is a powerful tool that enables the study of electrochemical processes at interfaces and provides insights into the intrinsic chemical and structural heterogeneities of individual entities. Signal processing is a critical aspect of single-entity electrochemical measurements and can be used for data recognition, classification, and interpretation. In this review, we summarize the recent five-year advances in signal processing techniques for single-entity electrochemistry and highlight their importance in obtaining high-quality data and extracting effective features from electrochemical signals, which are generally applicable in single-entity electrochemistry. Moreover, we shed light on electrochemical noise analysis to obtain single-molecule frequency fingerprint spectra that can provide rich information about the ion networks at the interface. By incorporating advanced data analysis tools and artificial intelligence algorithms, single-entity electrochemical measurements would revolutionize the field of single-entity analysis, leading to new fundamental discoveries.

3.
Angew Chem Int Ed Engl ; 63(39): e202406677, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38825572

RESUMEN

The microtubule-associated protein tau participates in neurotransmission regulation via its interaction with synaptic vesicles (SVs). The precise nature and mechanics of tau's engagement with SVs, especially regarding alterations in vesicle dynamics, remain a matter of discussion. We report an electrochemical method using a synapse-mimicking nanopipette to monitor vesicle dynamics induced by tau. A model vesicle of ~30 nm is confined within a lipid-modified nanopipette orifice with a comparable diameter to mimic the synaptic lipid environment. Both tau and phosphorylated tau (p-tau) present two-state dynamic behavior in this biomimetic system, showing typical ionic current oscillation, induced by lipid-tau interaction. The results indicate that p-tau has a stronger affinity to the lipid vesicles in the confined environment, blocking the vesicle movement to a higher degree. Taken together, this method bridges a gap for sensing synaptic vesicle dynamics in a confined lipid environment, mimicking vesicle movement near the synaptic membrane. These findings contribute to understanding how different types of tau protein regulate synaptic vesicle motility and to underlying its functional and pathological behaviours in disease.


Asunto(s)
Técnicas Electroquímicas , Vesículas Sinápticas , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/química , Humanos , Fosforilación
4.
J Am Chem Soc ; 145(21): 11499-11503, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37205856

RESUMEN

In multicellular organisms, cells typically communicate by sending and receiving chemical signals. Chemical messengers involved in the exocytosis of neuroendocrine cells or neurons are generally assumed to only originate from the fusing of intracellular large dense core vesicles (LDCVs) or synaptic vesicles with the cellular membrane following stimulation. Accumulated evidence suggests that exosomes─one of the main extracellular vesicles (EVs)─carrying cell-dependent DNA, mRNA, proteins, etc., play an essential role in cellular communication. Due to experimental limitations, it has been difficult to monitor the real-time release of individual exosomes; this restricts a comprehensive understanding of the basic molecular mechanisms and the functions of exosomes. In this work, we introduce amperometry with microelectrodes to capture the dynamic release of single exosomes from a single living cell, distinguish them from other EVs, and differentiate the molecules inside exosomes and those secreted from LDCVs. We show that, similar to many LDCVs and synaptic vesicles, exosomes released by neuroendocrine cells also contain catecholamine transmitters. This finding reveals a different mode of chemical communication via exosome-encapsulated chemical messengers and a potential interconnection between the two release pathways, changing the canonical view of exocytosis of neuroendocrine cells and possibly neurons. This defines a new mechanism for chemical communication at the fundamental level and opens new avenues in the research of the molecular biology of exosomes in the neuroendocrine and central nervous systems.


Asunto(s)
Exosomas , Vesículas Extracelulares , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Comunicación Celular , Membrana Celular/metabolismo , Neuronas
5.
Chembiochem ; 24(9): e202200694, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37043703

RESUMEN

Hofmeister effects play a critical role in numerous physicochemical and biological phenomena, including the solubility and/or accumulation of proteins, the activities of enzymes, ion transport in biochannels, the structure of lipid bilayers, and the dynamics of vesicle opening and exocytosis. This minireview focuses on how ionic specificity affects the physicochemical properties of biomolecules to regulate cellular exocytosis, vesicular content, and nanovesicle opening. We summarize recent progress in further understanding Hofmeister effects on biomacromolecules and their applications in biological systems. These important steps have increased our understanding of the Hofmeister effects on cellular exocytosis, vesicular content, and nanovesicle opening. Increasing evidence is firmly establishing that the ions along the Hofmeister series play an important role in living organisms that has often been ignored.


Asunto(s)
Proteínas , Agua , Proteínas/química , Agua/química , Iones/química , Membrana Dobles de Lípidos
6.
Int J Mol Sci ; 24(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36768868

RESUMEN

Stress granules (SGs) are stress-induced biomolecular condensates which originate primarily from inactivated RNA translation machinery and translation initiation factors. SG formation is an important defensive mechanism for cell survival, while its dysfunction has been linked to neurodegenerative diseases. However, the molecular mechanisms of SG assembly and disassembly, as well as their impacts on cellular recovery, are not fully understood. More thorough investigations into the molecular dynamics of SG pathways are required to understand the pathophysiological roles of SGs in cellular systems. Here, we characterize the SG and cytoplasmic protein turnover in neuronal progenitor cells (NPCs) under stressed and non-stressed conditions using correlative STED and NanoSIMS imaging. We incubate NPCs with isotopically labelled (15N) leucine and stress them with the ER stressor thapsigargin (TG). A correlation of STED and NanoSIMS allows the localization of individual SGs (using STED), and their protein turnover can then be extracted based on the 15N/14N ratio (using NanoSIMS). We found that TG-induced SGs, which are highly dynamic domains, recruit their constituents predominantly from the cytoplasm. Moreover, ER stress impairs the total cellular protein turnover regimen, and this impairment is not restored after the commonly proceeded stress recovery period.


Asunto(s)
Gránulos Citoplasmáticos , Enfermedades Neurodegenerativas , Humanos , Gránulos Citoplasmáticos/metabolismo , Gránulos de Estrés , Citoplasma , Enfermedades Neurodegenerativas/metabolismo , Células Madre , Estrés Fisiológico
7.
Angew Chem Int Ed Engl ; 62(15): e202217993, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36749546

RESUMEN

Aberrant functioning of the proteasome has been associated with crucial pathologic conditions including neurodegeneration. Yet, the complex underlying causes at the cellular level remain unclear and there are conflicting reports of neuroprotective to neurodegenerative effects of proteasomal inhibitors such as lactacystin that are utilised as models for neurodegenerative diseases. The conflicting results may be associated with different dose regimes of lactacystin and hence we have performed a dose dependent study of the effects of lactacystin to identify concurrent changes in the cell membrane lipid profile and the dynamics of exocytosis using a combination of surface sensitive mass spectrometry and single cell amperometry. Significant changes of negatively charged lipids were associated with different lactacystin doses that showed a weak correlation with exocytosis while changes in PE and PE-O lipids showed dose dependent changes correlated with initial pore formation and total release of vesicle content respectively.


Asunto(s)
Lípidos de la Membrana , Inhibidores de Proteasoma , Inhibidores de Proteasoma/farmacología , Espectrometría de Masas , Exocitosis
8.
Angew Chem Int Ed Engl ; 62(28): e202304098, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37195146

RESUMEN

We used correlative transmission electron microscopy (TEM) and nanoscale secondary ion mass spectrometry (NanoSIMS) imaging to quantify the contents of subvesicular compartments, and to measure the partial release fraction of 13 C-dopamine in cellular nanovesicles as a function of size. Three modes of exocytosis comprise full release, kiss-and-run, and partial release. The latter has been subject to scientific debate, despite a growing amount of supporting literature. We tailored culturing procedures to alter vesicle size and definitively show no size correlation with the fraction of partial release. In NanoSIMS images, vesicle content was indicated by the presence of isotopic dopamine, while vesicles which underwent partial release were identified by the presence of an 127 I-labelled drug, to which they were exposed during exocytosis allowing entry into the open vesicle prior to its closing again. Demonstration of similar partial release fractions indicates that this mode of exocytosis is predominant across a wide range of vesicle sizes.


Asunto(s)
Dopamina , Espectrometría de Masa de Ion Secundario , Membrana Celular , Diagnóstico por Imagen , Exocitosis
9.
J Am Chem Soc ; 144(10): 4310-4314, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35254807

RESUMEN

Hofmeister effects have often been ignored in living organisms, although they affect the activity and functions of biological molecules. Herein, amperometry has been applied to show that the vesicular content, dynamics of exocytosis and vesicles opening, depend on the anionic species treatment. Compared to 100 µM Cl- treated chromaffin cells, a similar number of catecholamine molecules is released after chaotropic anions (ClO4- and SCN-) treatment, even though the vesicular catecholamine content significantly increases, suggesting a lower release fraction. In addition, there are opposite effects on the dynamics of vesicles release (shorter duration) and vesicle opening (longer duration) for chaotropic anions treated cells. Our results show anion-dependent vesicle release, vesicle opening, and vesicular content, providing understanding of the pharmacological and pathological processes induced by inorganic ions.


Asunto(s)
Células Cromafines , Exocitosis , Aniones , Catecolaminas , Células Cromafines/fisiología , Exocitosis/fisiología
10.
Anal Chem ; 94(29): 10549-10556, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35830231

RESUMEN

Antisense oligonucleotide (ASO)-based therapeutics hold great potential for the treatment of a variety of diseases. Therefore, a better understanding of cellular delivery, uptake, and trafficking mechanisms of ASOs is highly important for early-stage drug discovery. In particular, understanding the biodistribution and quantifying the abundance of ASOs at the subcellular level are needed to fully characterize their activity. Here, we used a combination of electron microscopy and NanoSIMS to assess the subcellular concentrations of a 34S-labeled GalNAc-ASO and a naked ASO in the organelles of primary human hepatocytes. We first cross-validated the method by including a 127I-labeled ASO, finding that the absolute concentration of the lysosomal ASO using two independent labeling strategies gave matching results, demonstrating the strength of our approach. This work also describes the preparation of external standards for absolute quantification by NanoSIMS. For both the 34S and 127I approaches used for our quantification methodology, we established the limit of detection (5 and 2 µM, respectively) and the lower limit of quantification (14 and 5 µM, respectively).


Asunto(s)
Yodo , Oligonucleótidos , Hepatocitos/metabolismo , Humanos , Oligonucleótidos Antisentido/metabolismo , Distribución Tisular
11.
Proc Natl Acad Sci U S A ; 116(43): 21409-21415, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31570594

RESUMEN

Electrochemical techniques with disk and nano-tip electrodes, together with calcium imaging, were used to examine the effect of short-interval repetitive stimuli on both exocytosis and vesicular content in a model cell line. We show that the number of events decreases markedly with repeated stimuli suggesting a depletion of exocytosis machinery. However, repetitive stimuli induce a more stable fusion pore, leading to an increased amount of neurotransmitter release. In contrast, the total neurotransmitter content inside the vesicles decreases after repetitive stimuli, resulting in a higher average release fraction from each event. We suggest a possible mechanism regarding a link between activity-induced plasticity and fraction of release.


Asunto(s)
Exocitosis , Neurotransmisores/metabolismo , Vesículas Secretoras/metabolismo , Animales , Transporte Biológico , Técnicas Electroquímicas , Plasticidad Neuronal , Neuronas/química , Neuronas/citología , Neuronas/metabolismo , Células PC12 , Ratas , Vesículas Secretoras/química
12.
Angew Chem Int Ed Engl ; 61(15): e202116217, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35129861

RESUMEN

We report the discovery that in the presence of chaotropic anions (SCN- ) the opening of nanometer biological vesicles at an electrified interface often becomes a two-step process (around 30 % doublet peaks). We have then used this to independently count molecules in each subvesicular compartment, the halo and protein dense-core, and the fraction of catecholamine binding to the dense-core is 68 %. Moreover, we differentiated two distinct populations of large dense-core vesicles (LDCVs) and quantified their content, which might correspond to immature (43 %) and mature (30 %) LDCVs, to reveal differences in their biogenesis. We speculate this is caused by an increase in the electrostatic attraction between protonated catecholamine and the negatively charged dense-core following adsorption of SCN- .


Asunto(s)
Catecolaminas , Catecolaminas/metabolismo
13.
Angew Chem Int Ed Engl ; 61(20): e202200716, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35267233

RESUMEN

Deficiency of iron, the most abundant transition metal in the brain and important for neuronal activity, is known to affect synaptic plasticity, causing learning and memory deficits. How iron deficiency impacts plasticity by altering neurotransmission at the cellular level is not fully understood. We used electrochemical methods to study the effect of iron deficiency on plasticity with repetitive stimulation. We show that during iron deficiency, repetitive stimulation causes significant decrease in exocytotic release without changing vesicular content. This results in a lower fraction of release, opposite to the control group, upon repetitive stimulation. These changes were partially reversible by iron repletion. This finding suggests that iron deficiency has a negative effect on plasticity by decreasing the fraction of vesicular release in response to repetitive stimulation. This provides a putative mechanism for how iron deficiency modulates plasticity.


Asunto(s)
Deficiencias de Hierro , Electroquímica , Hipocampo , Humanos , Hierro , Plasticidad Neuronal/fisiología , Transmisión Sináptica
14.
Angew Chem Int Ed Engl ; 61(43): e202210224, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36074259

RESUMEN

Interfacing biological tissues with electronic sensors offers the exciting opportunity to accurately investigate multiple biological processes. Accurate signal collection and application are the foundation of these measurements, but a long-term issue is the signal distortion resulting from the interface gap. The height of the gap is the key characteristic needed to evaluate or model the distortion, but it is difficult to measure. By integrating a pair of nanopores at the electronic sensor plane and measuring the ion conductance between them, we developed a versatile and straightforward strategy to realize the direct cooperative evaluation of the gap height during exocytotic release from adrenal gland tissues. The signaling distortion of this gap has been theoretically evaluated and shows almost no influence on the amperometric recording of exocytosis in a classic "semi-artificial synapse" configuration. This strategy should benefit research concerning various bio/chemical/machine interfaces.


Asunto(s)
Nanoporos , Electrónica
15.
Angew Chem Int Ed Engl ; 61(1): e202113406, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34734466

RESUMEN

Understanding the regulatory mechanisms of exocytosis is essential for uncovering the pathologies of neuronal disorders and developing related pharmaceuticals. In this work intracellular vesicle impact electrochemical cytometry (IVIEC) measurements with different-sized (50-500 nm radius) open carbon nanopipettes (CNPs) were performed to quantify the vesicular content and release kinetics of specific vesicle populations grouped by orifice sizes. Intracellular vesicles with radius below 100 nm were captured and narrowed between 50 and 100 nm. On the basis of this, single vesicular catecholamine concentrations in the intracellular environment were quantified as 0.23-1.1 M. Our results with L-3,4-dihydroxyphenylalanine (L-DOPA)-exposure indicate that L-DOPA regulates exocytosis by increasing the dense core size and vesicular content while catecholamine concentrations did not show obvious alterations. These were all achieved simultaneously and relatively noninvasively with open CNPs.


Asunto(s)
Carbono/química , Catecolaminas/análisis , Levodopa/química , Nanopartículas/química
16.
Anal Chem ; 93(39): 13161-13168, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34499839

RESUMEN

Carbon nanotube (CNT)-modified electrodes are used to obtain new measurements of vesicle content via amperometry. We have investigated the interaction between CNTs and isolated adrenal chromaffin vesicles (as a model) by vesicle impact electrochemical cytometry. Our data show that the presence of CNTs not only significantly increased the vesicular catecholamine number from 2,250,000 ± 112,766 molecules on a bare electrode to 3,880,000 ± 686,573 molecules on CNT/carbon fiber electrodes but also caused an enhancement in the maximum intensity of the current, which implies the existence of strong interactions between vesicle biolayers and CNTs and an altered electroporation process. We suggest that CNTs might perturb and destabilize the membrane structure of intracellular vesicles and cause the aggregation or fusion of vesicles into new vesicles with larger size and higher content. Our findings are consistent with previous computational and experimental results and support the hypothesis that CNTs as a mediator can rearrange the phospholipid bilayer membrane and trigger homotypic fusion of intracellular vesicles.


Asunto(s)
Nanotubos de Carbono
17.
Anal Chem ; 93(47): 15744-15751, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34783529

RESUMEN

We present a pH nanosensor conceived for single intracellular measurements. The sensing architecture consisted of a two-electrode system evaluated in the potentiometric mode. We used solid-contact carbon nanopipette electrodes tailored to produce both the indicator (pH nanosensor) and reference electrodes. The indicator electrode was a membrane-based ion-selective electrode containing a receptor for hydrogen ions that provided a favorable selectivity for intracellular measurements. The analytical features of the pH nanosensor revealed a Nernstian response (slope of -59.5 mV/pH unit) with appropriate repeatability and reproducibility (variation coefficients of <2% for the calibration parameters), a fast response time (<5 s), adequate medium-term drift (0.7 mV h-1), and a linear range of response including physiological and abnormal cell pH levels (6.0-8.5). In addition, the position and configuration of the reference electrode were investigated in cell-based experiments to provide unbiased pH measurements, in which both the indicator and reference electrodes were located inside the same cell, each of them inside two neighboring cells, or the indicator electrode inside the cell and the reference electrode outside of (but nearby) the studied cell. Finally, the pH nanosensor was applied to two cases: (i) the tracing of the pH gradient from extra-to intracellular media over insertion into a single PC12 cell and (ii) the monitoring of variations in intracellular pH in response to exogenous administration of pharmaceuticals. It is anticipated that the developed pH nanosensor, which is a label-free analytical tool, has high potential to aid in the investigation of pathological states that manifest in cell pH misregulation, with no restriction in the type of targeted cells.


Asunto(s)
Electrodos de Iones Selectos , Protones , Concentración de Iones de Hidrógeno , Potenciometría , Reproducibilidad de los Resultados
18.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008583

RESUMEN

The absolute concentration and the compartmentalization of analytes in cells and organelles are crucial parameters in the development of drugs and drug delivery systems, as well as in the fundamental understanding of many cellular processes. Nanoscale secondary ion mass spectrometry (NanoSIMS) imaging is a powerful technique which allows subcellular localization of chemical species with high spatial and mass resolution, and high sensitivity. In this study, we combined NanoSIMS imaging with spatial oversampling with transmission electron microscopy (TEM) imaging to discern the compartments (dense core and halo) of large dense core vesicles in a model cell line used to study exocytosis, and to localize 13C dopamine enrichment following 4-6 h of 150 µM 13C L-3,4-dihydroxyphenylalanine (L-DOPA) incubation. In addition, the absolute concentrations of 13C dopamine in distinct vesicle domains as well as in entire single vesicles were quantified and validated by comparison to electrochemical data. We found concentrations of 87.5 mM, 16.0 mM and 39.5 mM for the dense core, halo and the whole vesicle, respectively. This approach adds to the potential of using combined TEM and NanoSIMS imaging to perform absolute quantification and directly measure the individual contents of nanometer-scale organelles.


Asunto(s)
Dopamina/metabolismo , Animales , Línea Celular Tumoral , Vesículas de Núcleo Denso/metabolismo , Exocitosis/fisiología , Microscopía Electrónica de Transmisión/métodos , Orgánulos/metabolismo , Células PC12 , Ratas , Espectrometría de Masa de Ion Secundario/métodos
19.
Angew Chem Int Ed Engl ; 60(44): 23552-23556, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34363735

RESUMEN

Electrochemical methods were used to explore the exocytotic nature of serotonin (5-HT) release in human carcinoid BON cells, an in vitro human enterochromaffin cell model, to understand the mechanisms operating the release of gut-derived 5-HT in the intestinal mucosal epithelium. We show that the fractional vesicular 5-HT release in BON cells is 80 % compared to previous work in pancreatic beta cells (34 %). The fractional release increased from 80 % in control BON cells to 87 % with 5-HT preincubation and nearly 100 % with the combination of 5-HT and the 5-HT4 autoreceptor agonist, cisapride. Thus, partial release is the primary mechanism of exocytosis in BON cells, resulting in a variable amount of the vesicular content being released. Factors that control secretion of 5-HT from enterochromaffin cells or BON cells are important as partial release provides a mechanism for development of effective therapeutic strategies to treat gastrointestinal diseases.


Asunto(s)
Técnicas Electroquímicas , Células Enterocromafines/efectos de los fármacos , Nanotecnología , Serotonina/farmacología , Liberación de Fármacos , Exocitosis/efectos de los fármacos , Enfermedades Gastrointestinales/tratamiento farmacológico , Humanos , Serotonina/química
20.
Angew Chem Int Ed Engl ; 60(32): 17378-17382, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34041832

RESUMEN

Modafinil, a widely used psychoactive drug, has been shown to exert a positive impact on cognition and is used to treat sleep disorders and hyperactivity. Using time-of-flight secondary ion mass spectrometric imaging, we studied the changes of brain lipids of Drosophila melanogaster induced by modafinil to gain insight into the functional mechanism of modafinil in the brain. We found that upon modafinil treatment, the abundance of phosphatidylcholine and sphingomyelin species in the central brain of Drosophila is significantly decreased, whereas the levels of phosphatidylethanolamine and phosphatidylinositol in the brains show significant enhancement compared to the control flies. The alteration of brain lipids caused by modafinil is consistent with previous studies about cognition-related drugs and offers a plausible mechanism regarding the action of modafinil in the brain as well as a potential target for the treatment of certain disorders.


Asunto(s)
Encéfalo/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Lípidos de la Membrana/metabolismo , Modafinilo/farmacología , Nootrópicos/farmacología , Animales , Encéfalo/citología , Encéfalo/metabolismo , Análisis de Componente Principal , Espectrometría de Masa de Ion Secundario/métodos , Espectrometría de Masa de Ion Secundario/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA