Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 21(4): 1827-1837, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38291706

RESUMEN

Noninvasive imaging of the immune checkpoint protein programmed death ligand 1 (PD-L1; synonyms: CD274, B7-H1) holds great promise to improve patient selection and, thus, response rates for immune checkpoint therapy (ICT) with monoclonal antibodies targeting the PD1/PD-L1 axis. The PD-L1 specific peptide WL12 (cyclo(AcY-(NMe)A-N-P-H-L-Hyp-W-S-W(Me)-(NMe)Nle-(NMe)Nle-O-C)-G-NH2) was functionalized with the Gallium-68 chelator TRAP by means of click chemistry (CuAAC). The resulting conjugate TRAP-WL12 was labeled with Gallium-68 within 16 min, with approximately 90% radiochemical yield and 99% radiochemical purity, affording Ga-68-TRAP-WL12 with molar activities typically exceeding 100 MBq/nmol. This radiotracer was characterized by positron emission tomography (PET) imaging and ex vivo biodistribution in murine xenografts of nontransfected PD-L1 expressing tumor cell lines, MDA-MB-231 (human breast carcinoma), and H2009 (human lung adenocarcinoma). It showed a favorable biodistribution profile with rapid renal clearance and low background (tumor-to-blood ratio = 26.6, 3 h p.i.). Conjugation of the Ga-68-TRAP moiety to WL12 successfully mitigated the nonspecific uptake of this peptide in organs, particularly the liver. This was demonstrated by comparing Ga-68-TRAP-WL12 with the archetypical Ga-68-DOTA-WL12, for which tumor-to-liver ratios of 1.4 and 0.5, respectively, were found. Although immunohistochemistry (IHC) revealed a low PD-L1 expression in MDA-MB-213 and H2009 xenografts that corresponds well to the clinical situation, PET showed high tumor uptakes (6.6 and 7.3% injected activity per gram of tissue (iA/g), respectively) for Ga-68-TRAP-WL12. Thus, this tracer has the potential for routine clinical PD-L1 PET imaging because it detects even very low PD-L1 expression densities with high sensitivity and may open an avenue to replace PD-L1 IHC of biopsies as the standard means to select potential responders for ICT.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Animales , Ratones , Radioisótopos de Galio/química , Antígeno B7-H1/metabolismo , Xenoinjertos , Distribución Tisular , Péptidos/química , Neoplasias Pulmonares/diagnóstico por imagen , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Pulmón/metabolismo
2.
ACS Omega ; 3(2): 2428-2436, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30023833

RESUMEN

The epithelial integrin αvß6 is expressed by many malignant carcinoma cell types, including pancreatic cancer, and thus represents a promising target for radionuclide therapy. The peptide cyclo(FRGDLAFp(NMe)K) was decorated with different chelators (DOTPI, DOTAGA, and DOTA). The Lu(III) complexes of these conjugates exhibited comparable αvß6 integrin affinities (IC50 ranging from 0.3 to 0.8 nM) and good selectivities against other integrins (IC50 for αvß8 >43 nM; for α5ß1 >238 nM; and for αvß3, αvß5, and αIIbß3 >1000 nM). Although different formal charges of the Lu(III) chelates (ranging from 0 to 4) resulted in strongly varying degrees of hydrophilicity (log D ranging from -3.0 to -4.1), biodistributions in murine H2009 xenografts of the Lu-177-labeled compounds (except the DOTPI derivative) were quite similar and comparable to our previously reported αvß6 integrin positron emission tomography tracer Ga-68-avebehexin. Hence, combinations of existing Ga-68- and Lu-177-labeled c(FRGDLAFp(NMe)K) derivatives could be utilized for αvß6 integrin-targeted theranostics, whereas our data nonetheless suggest that further improvement of pharmacokinetics might be necessary to ensure clinical success.

3.
ACS Omega ; 3(7): 8278-8287, 2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-30087939

RESUMEN

To investigate the effect of carbohydrate moieties on the pharmacokinetic profile of prostate-specific membrane antigen (PSMA) inhibitors, carbohydrated derivatives of the established PSMA-targeted radiopharmaceutical PSMA I&T were developed and evaluated. As observed for the reference PSMA I&T, the natGa/natLu complexes of the respective galactose-, mannose-, and cellobiose-conjugated analogs showed high PSMA affinity. Carbohydration had almost no effect on the lipophilicity, whereas PSMA-mediated internalization was reduced. The specific binding toward human serum albumin (HSA) decreased from 78.6% for [natLu]PSMA I&T to 19.9% for the natLu-labeled cellobiose derivative. Compared to [68Ga]PSMA I&T, [68Ga]PSMA galactose displayed lower nonspecific tissue and kidney accumulation but also slightly lower tumor uptake in small-animal positron emission tomography (µPET) imaging. Biodistribution studies confirmed reduced unspecific uptake in nontarget tissue and decreased renal accumulation of the metabolically stable [68Ga]PSMA galactose derivative, resulting in overall improved tumor-to-tissue ratios. However, carbohydration has no significant beneficial in vivo effect on the targeting performance of PSMA I&T. Nevertheless, carbohydration expands the repertoire of feasible modifications within the linker area and might be a valuable tool for the future development of PSMA inhibitors with decreased kidney uptake.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA