Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Development ; 139(16): 2999-3009, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22764047

RESUMEN

The branched morphology of dendrites represents a functional hallmark of distinct neuronal types. Nonetheless, how diverse neuronal class-specific dendrite branches are generated is not understood. We investigated specific classes of sensory neurons of Drosophila larvae to address the fundamental mechanisms underlying the formation of distinct branch types. We addressed the function of fascin, a conserved actin-bundling protein involved in filopodium formation, in class III and class IV sensory neurons. We found that the terminal branchlets of different classes of neurons have distinctive dynamics and are formed on the basis of molecularly separable mechanisms; in particular, class III neurons require fascin for terminal branching whereas class IV neurons do not. In class III neurons, fascin controls the formation and dynamics of terminal branchlets. Previous studies have shown that transcription factor combinations define dendrite patterns; we find that fascin represents a downstream component of such programs, as it is a major effector of the transcription factor Cut in defining class III-specific dendrite morphology. Furthermore, fascin defines the morphological distinction between class III and class IV neurons. In fact, loss of fascin function leads to a partial conversion of class III neurons to class IV characteristics, while the reverse effect is obtained by fascin overexpression in class IV neurons. We propose that dedicated molecular mechanisms underlie the formation and dynamics of distinct dendrite branch types to elicit the accurate establishment of neuronal circuits.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Proteínas de Microfilamentos/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Portadoras/química , Proteínas Portadoras/genética , Dendritas/metabolismo , Dendritas/ultraestructura , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insecto , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/ultraestructura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
PLoS Comput Biol ; 6(8)2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20700495

RESUMEN

Understanding the principles governing axonal and dendritic branching is essential for unravelling the functionality of single neurons and the way in which they connect. Nevertheless, no formalism has yet been described which can capture the general features of neuronal branching. Here we propose such a formalism, which is derived from the expression of dendritic arborizations as locally optimized graphs. Inspired by Ramón y Cajal's laws of conservation of cytoplasm and conduction time in neural circuitry, we show that this graphical representation can be used to optimize these variables. This approach allows us to generate synthetic branching geometries which replicate morphological features of any tested neuron. The essential structure of a neuronal tree is thereby captured by the density profile of its spanning field and by a single parameter, a balancing factor weighing the costs for material and conduction time. This balancing factor determines a neuron's electrotonic compartmentalization. Additions to this rule, when required in the construction process, can be directly attributed to developmental processes or a neuron's computational role within its neural circuit. The simulations presented here are implemented in an open-source software package, the "TREES toolbox," which provides a general set of tools for analyzing, manipulating, and generating dendritic structure, including a tool to create synthetic members of any particular cell group and an approach for a model-based supervised automatic morphological reconstruction from fluorescent image stacks. These approaches provide new insights into the constraints governing dendritic architectures. They also provide a novel framework for modelling and analyzing neuronal branching structures and for constructing realistic synthetic neural networks.


Asunto(s)
Simulación por Computador , Dendritas/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Axones/fisiología , Encéfalo/anatomía & histología , Encéfalo/fisiología , Humanos , Red Nerviosa/anatomía & histología , Neuronas/citología
3.
PLoS Comput Biol ; 4(12): e1000251, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19112481

RESUMEN

Dendrite morphology, a neuron's anatomical fingerprint, is a neuroscientist's asset in unveiling organizational principles in the brain. However, the genetic program encoding the morphological identity of a single dendrite remains a mystery. In order to obtain a formal understanding of dendritic branching, we studied distributions of morphological parameters in a group of four individually identifiable neurons of the fly visual system. We found that parameters relating to the branching topology were similar throughout all cells. Only parameters relating to the area covered by the dendrite were cell type specific. With these areas, artificial dendrites were grown based on optimization principles minimizing the amount of wiring and maximizing synaptic democracy. Although the same branching rule was used for all cells, this yielded dendritic structures virtually indistinguishable from their real counterparts. From these principles we derived a fully-automated model-based neuron reconstruction procedure validating the artificial branching rule. In conclusion, we suggest that the genetic program implementing neuronal branching could be constant in all cells whereas the one responsible for the dendrite spanning field should be cell specific.


Asunto(s)
Dendritas/clasificación , Dendritas/ultraestructura , Dípteros/citología , Modelos Anatómicos , Modelos Neurológicos , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/citología , Animales , Simulación por Computador
4.
PLoS One ; 8(8): e71540, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23977069

RESUMEN

Important brain functions need to be conserved throughout organisms of extremely varying sizes. Here we study the scaling properties of an essential component of computation in the brain: the single neuron. We compare morphology and signal propagation of a uniquely identifiable interneuron, the HS cell, in the blowfly (Calliphora) with its exact counterpart in the fruit fly (Drosophila) which is about four times smaller in each dimension. Anatomical features of the HS cell scale isometrically and minimise wiring costs but, by themselves, do not scale to preserve the electrotonic behaviour. However, the membrane properties are set to conserve dendritic as well as axonal delays and attenuation as well as dendritic integration of visual information. In conclusion, the electrotonic structure of a neuron, the HS cell in this case, is surprisingly stable over a wide range of morphological scales.


Asunto(s)
Dípteros/fisiología , Drosophila melanogaster/fisiología , Neuronas/fisiología , Animales , Dendritas/fisiología , Dípteros/anatomía & histología , Drosophila melanogaster/anatomía & histología , Fenómenos Electrofisiológicos , Modelos Neurológicos , Conducción Nerviosa/fisiología , Vías Visuales/fisiología
5.
Nat Med ; 18(1): 166-71, 2011 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-22198277

RESUMEN

Studying regeneration in the central nervous system (CNS) is hampered by current histological and imaging techniques because they provide only partial information about axonal and glial reactions. Here we developed a tetrahydrofuran-based clearing procedure that renders fixed and unsectioned adult CNS tissue transparent and fully penetrable for optical imaging. In large spinal cord segments, we imaged fluorescently labeled cells by 'ultramicroscopy' and two-photon microscopy without the need for histological sectioning. We found that more than a year after injury growth-competent axons regenerated abundantly through the injury site. A few growth-incompetent axons could also regenerate when they bypassed the lesion. Moreover, we accurately determined quantitative changes of glial cells after spinal cord injury. Thus, clearing CNS tissue enables an unambiguous evaluation of axon regeneration and glial reactions. Our clearing procedure also renders other organs transparent, which makes this approach useful for a large number of preclinical paradigms.


Asunto(s)
Axones/fisiología , Imagenología Tridimensional/métodos , Microglía/fisiología , Microscopía Confocal/métodos , Traumatismos de la Médula Espinal/fisiopatología , Regeneración de la Medula Espinal , Animales , Axones/ultraestructura , Furanos/química , Ratones , Microglía/ultraestructura
6.
Curr Biol ; 20(21): 1938-44, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20951043

RESUMEN

How does the sensory environment shape circuit organization in higher brain centers? Here we have addressed the dependence on activity of a defined circuit within the mushroom body of adult Drosophila. This is a brain region receiving olfactory information and involved in long-term associative memory formation. The main mushroom body input region, named the calyx, undergoes volumetric changes correlated with alterations of experience. However, the underlying modifications at the cellular level remained unclear. Within the calyx, the clawed dendritic endings of mushroom body Kenyon cells form microglomeruli, distinct synaptic complexes with the presynaptic boutons of olfactory projection neurons. We developed tools for high-resolution imaging of pre- and postsynaptic compartments of defined calycal microglomeruli. Here we show that preventing firing of action potentials or synaptic transmission in a small, identified fraction of projection neurons causes alterations in the size, number, and active zone density of the microglomeruli formed by these neurons. These data provide clear evidence for activity-dependent organization of a circuit within the adult brain of the fly.


Asunto(s)
Drosophila/fisiología , Cuerpos Pedunculados/fisiología , Sinapsis/fisiología , Potenciales de Acción/fisiología , Animales , Drosophila/ultraestructura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Cuerpos Pedunculados/ultraestructura , Neuronas/fisiología , Canales de Potasio/genética , Canales de Potasio/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Olfato , Sinapsis/ultraestructura , Transmisión Sináptica/fisiología
7.
Proc Natl Acad Sci U S A ; 104(24): 10229-33, 2007 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-17551009

RESUMEN

Complex flight maneuvers require a sophisticated system to exploit the optic flow resulting from moving images of the environment projected onto the retina. In the fly's visual course control center, the lobula plate, 10 so-called vertical system (VS) cells are thought to match, with their complex receptive fields, the optic flow resulting from rotation around different body axes. However, signals of single VS cells are unreliable indicators of such optic flow parameters in the context of their noisy, texture-dependent input from local motion measurements. Here we propose an alternative encoding scheme based on network simulations of biophysically realistic compartmental models of VS cells. The simulations incorporate recent data about the highly selective connectivity between VS cells consisting of an electrical axo-axonal coupling between adjacent cells and a reciprocal inhibition between the most distant cells. We find that this particular wiring performs a linear interpolation between the output signals of VS cells, leading to a robust representation of the axis of rotation even in the presence of textureless patches of the visual surround.


Asunto(s)
Dípteros/fisiología , Uniones Comunicantes/fisiología , Interneuronas/fisiología , Animales , Axones/fisiología , Simulación por Computador , Modelos Biológicos , Rotación , Campos Visuales/fisiología , Vías Visuales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA