Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Angew Chem Int Ed Engl ; 59(5): 2089-2094, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31793116

RESUMEN

In homogenous solution, cholesterol autoxidation leads to a mixture of epimers of 5 primary products, whose concentrations vary in the presence/absence of antioxidants, such as vitamin E. Two of the products (5α-OOH and 6ß-OOH) undergo Hock fragmentation to yield electrophilic secosterols implicated in disease. Herein, we show that the product distribution is similar in phospholipid bilayers, in that the 7-OOHs are the major products, but the presence/absence of vitamin E has no effect on the distribution. Cholesterol 7α-OOH, but not 7ß-OOH, undergoes Hock fragmentation to yield a mixture of unprecedented A-ring cleavage products and 6,7-epoxides. When subjected to typical derivatization conditions, 7α-OOH yields products with essentially indistinguishable chromatographic and spectroscopic features from the previously identified secosterols, casting further doubt on their controversial origin from endogenous O3 .


Asunto(s)
Colesterol/análogos & derivados , Colesterol/química , Fosfolípidos/química , Humanos , Oxidación-Reducción
2.
Inorg Chem ; 54(5): 2160-70, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25695880

RESUMEN

The lead(II) complexes formed with the multidentate chelator L-cysteine (H2Cys) in an alkaline aqueous solution were studied using (207)Pb, (13)C, and (1)H NMR, Pb LIII-edge X-ray absorption, and UV-vis spectroscopic techniques, complemented by electrospray ion mass spectrometry (ESI-MS). The H2Cys/Pb(II) mole ratios were varied from 2.1 to 10.0 for two sets of solutions with CPb(II) = 0.01 and 0.1 M, respectively, prepared at pH values (9.1-10.4) for which precipitates of lead(II) cysteine dissolved. At low H2Cys/Pb(II) mole ratios (2.1-3.0), a mixture of the dithiolate [Pb(S,N-Cys)2](2-) and [Pb(S,N,O-Cys)(S-HCys)](-) complexes with average Pb-(N/O) and Pb-S distances of 2.42 ± 0.04 and 2.64 ± 0.04 Å, respectively, was found to dominate. At high concentration of free cysteinate (>0.7 M), a significant amount converts to the trithiolate [Pb(S,N-Cys)(S-HCys)2](2-), including a minor amount of a PbS3-coordinated [Pb(S-HCys)3](-) complex. The coordination mode was evaluated by fitting linear combinations of EXAFS oscillations to the experimental spectra and by examining the (207)Pb NMR signals in the chemical shift range δPb = 2006-2507 ppm, which became increasingly deshielded with increasing free cysteinate concentration. One-pulse magic-angle-spinning (MAS) (207)Pb NMR spectra of crystalline Pb(aet)2 (Haet = 2-aminoethanethiol or cysteamine) with PbS2N2 coordination were measured for comparison (δiso = 2105 ppm). The UV-vis spectra displayed absorption maxima at 298-300 nm (S(-) → Pb(II) charge transfer) for the dithiolate PbS2N(N/O) species; with increasing ligand excess, a shoulder appeared at ∼330 nm for the trithiolate PbS3N and PbS3 (minor) complexes. The results provide spectroscopic fingerprints for structural models for lead(II) coordination modes to proteins and enzymes.


Asunto(s)
Cisteína/química , Plomo/química , Compuestos Organometálicos/química , Estructura Molecular , Compuestos Organometálicos/síntesis química , Soluciones , Agua/química
3.
Chemistry ; 19(36): 11949-62, 2013 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-23893705

RESUMEN

Although the understanding of intermolecular interactions, such as hydrogen bonding, is relatively well-developed, many additional weak interactions work both in tandem and competitively to stabilize a given crystal structure. Due to a wide array of potential applications, a substantial effort has been invested in understanding the halogen bond. Here, we explore the utility of multinuclear ((13)C, (14/15)N, (19)F, and (127)I) solid-state magnetic resonance experiments in characterizing the electronic and structural changes which take place upon the formation of five halogen-bonded co-crystalline product materials. Single-crystal X-ray diffraction (XRD) structures of three novel co-crystals which exhibit a 1:1 stoichiometry between decamethonium diiodide (i.e., [(CH3)3N(+)(CH2)10N(+)(CH3)3][2 I(-)]) and different para-dihalogen-substituted benzene moieties (i.e., p-C6X2Y4, X=Br, I; Y=H, F) are presented. (13)C and (15)N NMR experiments carried out on these and related systems validate sample purity, but also serve as indirect probes of the formation of a halogen bond in the co-crystal complexes in the solid state. Long-range changes in the electronic environment, which manifest through changes in the electric field gradient (EFG) tensor, are quantitatively measured using (14)N NMR spectroscopy, with a systematic decrease in the (14)N quadrupolar coupling constant (CQ) observed upon halogen bond formation. Attempts at (127)I solid-state NMR spectroscopy experiments are presented and variable-temperature (19)F NMR experiments are used to distinguish between dynamic and static disorder in selected product materials, which could not be conclusively established using solely XRD. Quantum chemical calculations using the gauge-including projector augmented-wave (GIPAW) or relativistic zeroth-order regular approximation (ZORA) density functional theory (DFT) approaches complement the experimental NMR measurements and provide theoretical corroboration for the changes in NMR parameters observed upon the formation of a halogen bond.

4.
ACS Appl Mater Interfaces ; 13(1): 688-695, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33356092

RESUMEN

The development of heterogeneous catalysts capable of selectively converting lignin model compounds into products of added value offers an exciting avenue to explore in the production of renewable chemical feedstocks. The use of metal-organic frameworks (MOFs) in such chemical transformations relies largely on the presence of accessible open metal sites found within highly porous networks that simultaneously allow for fast transport and strong interactions with desired substrates. Here, we present the first systematic study on the modulation of catalytic performance of a cationic framework, [Cu2(L)(H2O)2](NO3)2·5.5H2O (L = 1,1'-bis(3,5-dicarboxylatophenyl)-4,4'-bipyridinium), achieved through the exchange of anionic guests. Remarkably, the catalytic activity proves to be highly anion-dependent, with a nearly 10-fold increase toward the aerobic C-C bond cleavage of a lignin model compound when different anionic species are incorporated within the MOF. Moreover, we demonstrate that the cationic nature of the MOF, imparted by the incorporation of viologen moieties within the linker, tunes the electrophilicity of the active copper(II) sites, resulting in stronger interactions with the substrate. As such, the copper-based framework exhibits enhanced catalytic performance when compared to its neutral counterpart, emphasizing the appeal of charged frameworks for use as green heterogeneous catalysts.

5.
J Am Chem Soc ; 132(11): 3893-908, 2010 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-20196604

RESUMEN

A family of molecular heptacadmium carboxylate clusters templated inside [3 + 3] Schiff base macrocycles has been isolated and studied by variable temperature solution and solid-state NMR spectroscopy, single-crystal X-ray diffraction (SCXRD), and density functional theory (DFT) calculations. These metallocavitand cluster complexes adopt bowl-shaped structures, induced by metal coordination, giving rise to interesting host-guest and supramolecular phenomena. Specifically, dimerization of these metallocavitands yields capsules with vacant coordination and hydrogen-bonding sites accessible to encapsulated guests. Strong host-guest interactions explain the exceptionally high packing coefficient (0.80) observed for encapsulated N,N-dimethylformamide (DMF). The guest-accessible hydrogen-bonding sites arise from an unusual mu(3)-OH ligand bridging three cadmium ions. Thermodynamic and kinetic studies show that dimerization is an entropy-driven process with a highly associative mechanism. In DMF the exchange rate of peripheral cluster supporting carboxylate ligands is intrinsically linked to the rate of dimerization and these two seemingly different events have a common rate-determining step. Investigation of guest dynamics with solid-state (2)H NMR spectroscopy revealed 3-fold rotation of an encapsulated DMF molecule. These studies provide a solid understanding of the host-guest and dynamic properties of a new family of metallocavitands and may help in designing new supramolecular catalysts and materials.

6.
ACS Appl Mater Interfaces ; 12(45): 50692-50702, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33125212

RESUMEN

Organic thin-film transistors (OTFTs) have shown promise for a range of sensing applications, with phthalocyanine-based OTFTs demonstrated as sensors for atmospheric parameters, volatile gases, and small organic molecules including cannabinoids. However, the process of fabricating, testing, and optimizing OTFTs in a laboratory setting requires highly specialized equipment, materials, and expertise. To determine if sensor development can be expedited and thus reduce manufacturing burden, spectroelectrochemistry is applied to rapidly screen for molecular interactions between metal-free phthalocyanines and a variety of metal phthalocyanines (MPcs) and the cannabinoids Δ9-tetrahydrocannabinol (THC) or cannabidiol (CBD), with and without a cannabinoid-sensitive chromophore (Fast Blue BB). Spectral analyses are corroborated by 2D-NMR and related to measured OTFT performance. Spectroelectrochemical changes to the Q band region of the phthalocyanine spectra in the presence of analytes can be used to predict the response of OTFTs. Thus, with spectroelectrochemistry, a range of potential materials for OTFT small organic molecule-sensing applications can be quickly analyzed, and phthalocyanines with a preferred response can be selected.


Asunto(s)
Técnicas Biosensibles , Cannabinoides/química , Indoles/análisis , Transistores Electrónicos , Isoindoles , Estructura Molecular , Tamaño de la Partícula , Soluciones , Propiedades de Superficie
7.
ACS Appl Mater Interfaces ; 11(3): 3181-3188, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30590927

RESUMEN

Cationic frameworks are an emerging class of exceptional solid adsorbents capable of encapsulating highly toxic and persistent anionic pollutants. The controlled generation of cationic frameworks, however, lags behind the abundant design strategies devised to control the structures and topologies of neutral frameworks. In this regard, we report a rational approach that allows the conversion of the synthetic approach toward constructing a neutral framework into one allowing for the synthesis of a cationic one without incurring any changes to the overall topology or the selected metal ion. We demonstrate that the replacement of a functional group on an organic linker that promotes a similar coordination mode, but bearing one less negative charge, can yield the systematic generation of cationic frameworks. Moreover, we confirm the cationic nature of the metal-organic frameworks through preliminary anion-exchange experiments and propose a method to retain permanent porosity in cationic frameworks through the use of strongly binding anions. Altogether, these results show great promise for the construction of tunable nanoporous frameworks capable of carrying out anion-exchange processes.

8.
Chem Commun (Camb) ; 53(41): 5645-5648, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28480926

RESUMEN

The pivotal role of ππ interactions in the inclusion behaviour of a series of organometallic sandwich compounds is studied through single-crystal X-ray diffraction. The confinement effects of a crystalline sponge host are investigated where, notably, we observe an enhanced rotation of the ligand ring once encapsulated by the nanoporous framework, as evidenced by SSNMR experiments.

9.
J Phys Chem B ; 109(47): 22359-65, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16853912

RESUMEN

Sepiolite, a naturally occurring magnesiosilicate nanoporous clay mineral with a tunnel structure, contains two types of water molecules in the structure: zeolitic water trapped inside the tunnels and structural water molecules which interact strongly with magnesium cations. The zeolitic water was removed by heating the sepiolite to 120 degrees C. The partially dehydrated sepiolite absorbed pyridine vapor to produce an intercalated material where the pyridine takes the place of the zeolitic water. 1H solid-state MAS NMR spectroscopy showed that there is isotopic H/D exchange between pyridine-d5 and the remaining structural water molecules of the sepiolite framework. The exchange takes place at room temperature over several days. Wide line solid state 2H NMR of the sequestered pyridine-d5 showed that two populations of pyridine molecules coexist in the material: one very mobile physisorbed population, which can be removed by heating at 90 degrees C, and a population due to pyridine trapped in the tunnels. Except for small in-plane librations, the trapped pyridine was shown to be held rigidly by the sepiolite. When the pyridine intercalated material is heated at 400 degrees C the structural water and some of the pyridine is lost. The remaining pyridine takes the place of the structural water to produce a new inorganic-organic nanohybrid material with the pyridine bound to the terminal Mg(II) in the structure. The pyridine in this material as well as the intercalated material was characterized by slow-spinning 15N and 13C CP/MAS NMR spectroscopy. The 15N NMR was shown to be a very sensitive probe to characterize the various types of pyridine. The data indicate that pyridine molecules in the inorganic-organic nanohybrid material are directly bound to magnesium cations exposed in the tunnels of sepiolite.

10.
J Environ Sci Health B ; 42(1): 71-7, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17162570

RESUMEN

Fast pyrolysis of chicken manure produced two biooils (Fractions I and II) and a residual char. All four materials were analyzed by chemical methods, 13C and 1H Nuclear Magnetic Resonance Spectrometry (13C and 1H NMR), and Fourier Transform Infrared Spectrosphotometry (FTIR). The char showed the highest C content and the highest aromaticity. Of the two biooils Fraction II was higher in C, yield and calorific value but lower in N than Fraction I. The S and ash content of the two biooil fractions were low. The Cross Polarization Magic Angle Spinning (CP-MAS) 13C NMR spectrum of the initial chicken manure showed it to be rich in cellulose, which was a major component of sawdust used as bedding material. Nuclear Magnetic Resonance (NMR) spectra of the two biooils indicated that Fraction I was less aromatic than Fraction II. Among the aromatics in the two biooils, we were able to tentatively identify N-heterocyclics like indoles, pyridines, and pyrazines. FTIR spectra were generally in agreement with the NMR data. FTIR spectra of both biooils showed the presence of both primary and secondary amides and primary amines as well as N-heterocyclics such as pyridines, quinolines, and pyrimidines. The FTIR spectrum of the char resembled that of the initial chicken manure except that the concentration of carbohydrates was lower.


Asunto(s)
Contaminantes Ambientales/análisis , Calor , Espectroscopía de Resonancia Magnética/métodos , Estiércol/análisis , Aceites/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Animales , Isótopos de Carbono , Pollos , Contaminantes Ambientales/química , Aceites/química , Oxidación-Reducción , Volatilización
11.
Magn Reson Chem ; 42(7): 573-6, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15181626

RESUMEN

The reorientational dynamics of p-sulfonatocalix[4]arene and of its La(III) complex in deuterated water were studied by 1H NMR longitudinal relaxation rates. It is shown that the relaxation is purely dipolar in the non-extreme narrowing regime. The distance between the geminal protons could be determined from the NMR data, giving good agreement with the values generally used in correlation time calculations. The correlation times show an Arrhenius behaviour in good agreement with previously reported data from 13C measurements for a similar uncomplexed calixarene. The Arrhenius energies of activation are identical for the uncomplexed and the complexed calixarenes, suggesting a reorientational motion strongly dependent on the structure of the water cage around the complex. This is also in agreement with a complexation of the La(III) cation in the second sphere of solvation of the sulfonate groups, as shown by molecular dynamics simulations.


Asunto(s)
Calixarenos/análisis , Calixarenos/química , Deuterio/química , Lantano/análisis , Lantano/química , Espectroscopía de Resonancia Magnética/métodos , Agua/química , Conformación Molecular , Movimiento (Física) , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA