Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(14): 6760-6765, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30872481

RESUMEN

Heparan sulfate (HS) is a linear, complex polysaccharide that modulates the biological activities of proteins through binding sites made by a series of Golgi-localized enzymes. Of these, glucuronyl C5-epimerase (Glce) catalyzes C5-epimerization of the HS component, d-glucuronic acid (GlcA), into l-iduronic acid (IdoA), which provides internal flexibility to the polymer and forges protein-binding sites to ensure polymer function. Here we report crystal structures of human Glce in the unbound state and of an inactive mutant, as assessed by real-time NMR spectroscopy, bound with a (GlcA-GlcNS)n substrate or a (IdoA-GlcNS)n product. Deep infiltration of the oligosaccharides into the active site cleft imposes a sharp kink within the central GlcNS-GlcA/IdoA-GlcNS trisaccharide motif. An extensive network of specific interactions illustrates the absolute requirement of N-sulfate groups vicinal to the epimerization site for substrate binding. At the epimerization site, the GlcA/IdoA rings are highly constrained in two closely related boat conformations, highlighting ring-puckering signatures during catalysis. The structure-based mechanism involves the two invariant acid/base residues, Glu499 and Tyr578, poised on each side of the target uronic acid residue, thus allowing reversible abstraction and readdition of a proton at the C5 position through a neutral enol intermediate, reminiscent of mandelate racemase. These structures also shed light on a convergent mechanism of action between HS epimerases and lyases and provide molecular frameworks for the chemoenzymatic synthesis of heparin or HS analogs.


Asunto(s)
Carbohidrato Epimerasas/química , Ácido Glucurónico/química , Heparina/química , Oligosacáridos/química , Sitios de Unión , Carbohidrato Epimerasas/genética , Catálisis , Cristalografía por Rayos X , Células HEK293 , Humanos , Relación Estructura-Actividad , Especificidad por Sustrato
2.
PLoS Genet ; 12(5): e1006032, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27176226

RESUMEN

In response to environmental changes, Pseudomonas aeruginosa is able to switch from a planktonic (free swimming) to a sessile (biofilm) lifestyle. The two-component system (TCS) GacS/GacA activates the production of two small non-coding RNAs, RsmY and RsmZ, but four histidine kinases (HKs), RetS, GacS, LadS and PA1611, are instrumental in this process. RetS hybrid HK blocks GacS unorthodox HK autophosphorylation through the formation of a heterodimer. PA1611 hybrid HK, which is structurally related to GacS, interacts with RetS in P. aeruginosa in a very similar manner to GacS. LadS hybrid HK phenotypically antagonizes the function of RetS by a mechanism that has never been investigated. The four sensors are found in most Pseudomonas species but their characteristics and mode of signaling may differ from one species to another. Here, we demonstrated in P. aeruginosa that LadS controls both rsmY and rsmZ gene expression and that this regulation occurs through the GacS/GacA TCS. We additionally evidenced that in contrast to RetS, LadS signals through GacS/GacA without forming heterodimers, either with GacS or with RetS. Instead, we demonstrated that LadS is involved in a genuine phosphorelay, which requires both transmitter and receiver LadS domains. LadS signaling ultimately requires the alternative histidine-phosphotransfer domain of GacS, which is here used as an Hpt relay by the hybrid kinase. LadS HK thus forms, with the GacS/GacA TCS, a multicomponent signal transduction system with an original phosphorelay cascade, i.e. H1LadS→D1LadS→H2GacS→D2GacA. This highlights an original strategy in which a unique output, i.e. the modulation of sRNA levels, is controlled by a complex multi-sensing network to fine-tune an adapted biofilm and virulence response.


Asunto(s)
Proteínas Bacterianas/genética , Histidina Quinasa/genética , Pseudomonas aeruginosa/genética , Factores de Transcripción/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Isoformas de Proteínas , ARN Pequeño no Traducido/genética , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Virulencia
3.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 7): 1455-70, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26143917

RESUMEN

Chitotriosidase (CHIT1) is a human chitinase belonging to the highly conserved glycosyl hydrolase family 18 (GH18). GH18 enzymes hydrolyze chitin, an N-acetylglucosamine polymer synthesized by lower organisms for structural purposes. Recently, CHIT1 has attracted attention owing to its upregulation in immune-system disorders and as a marker of Gaucher disease. The 39 kDa catalytic domain shows a conserved cluster of three acidic residues, Glu140, Asp138 and Asp136, involved in the hydrolysis reaction. Under an excess concentration of substrate, CHIT1 and other homologues perform an additional activity, transglycosylation. To understand the catalytic mechanism of GH18 chitinases and the dual enzymatic activity, the structure and mechanism of CHIT1 were analyzed in detail. The resolution of the crystals of the catalytic domain was improved from 1.65 Š(PDB entry 1waw) to 0.95-1.10 Šfor the apo and pseudo-apo forms and the complex with chitobiose, allowing the determination of the protonation states within the active site. This information was extended by hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. The results suggest a new mechanism involving changes in the conformation and protonation state of the catalytic triad, as well as a new role for Tyr27, providing new insights into the hydrolysis and transglycosylation activities.


Asunto(s)
Hexosaminidasas/química , Hexosaminidasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Disacáridos/metabolismo , Glicosilación , Humanos , Hidrólisis , Modelos Moleculares , Teoría Cuántica
4.
Nat Commun ; 14(1): 1002, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864019

RESUMEN

In two-component systems, the information gathered by histidine kinases (HKs) are relayed to cognate response regulators (RRs). Thereby, the phosphoryl group of the auto-phosphorylated HK is transferred to the receiver (Rec) domain of the RR to allosterically activate its effector domain. In contrast, multi-step phosphorelays comprise at least one additional Rec (Recinter) domain that is typically part of the HK and acts as an intermediary for phosphoryl-shuttling. While RR Rec domains have been studied extensively, little is known about discriminating features of Recinter domains. Here we study the Recinter domain of the hybrid HK CckA by X-ray crystallography and NMR spectroscopy. Strikingly, all active site residues of the canonical Rec-fold are pre-arranged for phosphoryl-binding and BeF3- binding does not alter secondary or quaternary structure, indicating the absence of allosteric changes, the hallmark of RRs. Based on sequence-covariation and modeling, we analyze the intra-molecular DHp/Rec association in hybrid HKs.


Asunto(s)
Histidina Quinasa , Cristalografía por Rayos X , Histidina Quinasa/química
5.
Structure ; 30(9): 1285-1297.e5, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35767996

RESUMEN

Virulence in Pseudomonas aeruginosa (PA) depends on complex regulatory networks, involving phosphorelay systems based on two-component systems (TCSs). The GacS/GacA TCS is a master regulator of biofilm formation, swarming motility, and virulence. GacS is a membrane-associated unorthodox histidine kinase (HK) whose phosphorelay signaling pathway is inhibited by the RetS hybrid HK. Here we provide structural and functional insights into the interaction of GacS with RetS. The structure of the GacS-HAMP-H1 cytoplasmic regions reveals an unusually elongated homodimer marked by a 135 Å long helical bundle formed by the HAMP, the signaling helix (S helix) and the DHp subdomain. The HAMP and S helix regions are essential for GacS signaling and contribute to the GacS/RetS binding interface. The structure of the GacS D1 domain together with the discovery of an unidentified functional ND domain, essential for GacS full autokinase activity, unveils signature motifs in GacS required for its atypical autokinase mechanism.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa , Proteínas Bacterianas/química , Histidina Quinasa/química , Pseudomonas aeruginosa/metabolismo , Virulencia
6.
J Med Chem ; 61(3): 695-710, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29283260

RESUMEN

This article highlights our work toward the identification of a potent, selective, and efficacious acidic mammalian chitinase (AMCase) inhibitor. Rational design, guided by X-ray analysis of several inhibitors bound to human chitotriosidase (hCHIT1), led to the identification of compound 7f as a highly potent AMCase inhibitor (IC50 values of 14 and 19 nM against human and mouse enzyme, respectively) and selective (>150× against mCHIT1) with very good PK properties. This compound dosed once daily at 30 mg/kg po showed significant anti-inflammatory efficacy in HDM-induced allergic airway inflammation in mice, reducing inflammatory cell influx in the BALF and total IgE concentration in plasma, which correlated with decrease of chitinolytic activity. Therapeutic efficacy of compound 7f in the clinically relevant aeroallergen-induced acute asthma model in mice provides a rationale for developing AMCase inhibitor for the treatment of asthma.


Asunto(s)
Asma/tratamiento farmacológico , Asma/enzimología , Quitinasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Terapia Molecular Dirigida , Animales , Células CHO , Quitinasas/química , Cricetulus , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/uso terapéutico , Humanos , Ratones , Modelos Moleculares , Conformación Proteica
7.
Biomol NMR Assign ; 11(1): 25-28, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27714507

RESUMEN

Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen. It can infect vulnerable patients such as those with cystic fibrosis or hospitalized in intensive care units where it is responsible for both acute and chronic infection. The switch between these infections is controlled by a complex regulatory system involving the central GacS/GacA two-component system that activates the production of two small non-coding RNAs. GacS is a histidine kinase harboring one periplasmic detection domain, two inner-membrane helices and three H1/D1/H2 cytoplasmic domains. By detecting a yet unknown signal, the GacS histidine-kinase periplasmic detection domain (GacSp) is predicted to play a key role in activating the GacS/GacA pathway. Here, we present the chemical shift assignment of 96 % of backbone atoms (HN, N, C, Cα, Cß and Hα), 88 % aliphatic hydrogen atoms and 90 % of aliphatic carbon atoms of this domain. The NMR-chemical shift data, on the basis of Talos server secondary structure predictions, reveal that GacSp consists of 3 ß-strands, 3 α-helices and a major loop devoid of secondary structures.


Asunto(s)
Histidina Quinasa/química , Histidina Quinasa/metabolismo , Resonancia Magnética Nuclear Biomolecular , Periplasma/metabolismo , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/enzimología , Secuencia de Aminoácidos
8.
Sci Rep ; 7(1): 11262, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900144

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections and has developed resistance mechanisms due to its ability to promote biofilm formation and evade host adaptive immune responses. Here, we investigate the functional role of the periplasmic detector domain (GacSPD) from the membrane-bound GacS histidine kinase, which is one of the key players for biofilm formation and coordination of bacterial lifestyles. A gacS mutant devoid of the periplasmic detector domain is severely defective in biofilm formation. Functional assays indicate that this effect is accompanied by concomitant changes in the expression of the two RsmY/Z small RNAs that control activation of GacA-regulated genes. The solution NMR structure of GacSPD reveals a distinct PDC/PAS α/ß fold characterized by a three-stranded ß-sheet flanked by α-helices and an atypical major loop. Point mutations in a putative ligand binding pocket lined by positively-charged residues originating primarily from the major loop impaired biofilm formation. These results demonstrate the functional role of GacSPD, evidence critical residues involved in GacS/GacA signal transduction system that regulates biofilm formation, and document the evolutionary diversity of the PDC/PAS domain fold in bacteria.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Histidina Quinasa/química , Histidina Quinasa/metabolismo , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/metabolismo , Pseudomonas aeruginosa/enzimología , Dominio Catalítico , Histidina Quinasa/genética , Espectroscopía de Resonancia Magnética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Periplasmáticas/genética , Mutación Puntual , Conformación Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo
9.
PLoS One ; 11(4): e0154190, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27111557

RESUMEN

Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase (CHIT1) is one of the two active human chitinases, involved in the innate immune response and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain linked by a hinge to its chitin binding domain (ChBD). This latter domain belongs to the carbohydrate-binding module family 14 (CBM14 family) and facilitates binding to chitin. So far, the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian Chitinase (AMCase) comprise only their catalytic domain. Here, we report a crystallization strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the first crystal structure of the full length CHIT1 (CHIT1-FL) at 1.95 Å resolution. The CHIT1 chitin binding domain (ChBDCHIT1) structure shows a distorted ß-sandwich 3D fold, typical of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine residues forming three disulfide bridges and several exposed aromatic residues that probably are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be involved in electrostatic interactions. Our data highlight the strong structural conservation of CBM14 family members and uncover the structural similarity between the human ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure, determined with an adapted crystallization approach, is one of the few complete bi-modular chitinase structures available and reveals the structural features of a human CBM14 domain.


Asunto(s)
Quitina/química , Cisteína/química , Hexosaminidasas/química , Alérgenos/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Dominio Catalítico , Quitina/metabolismo , Cisteína/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Expresión Génica , Células HEK293 , Hexosaminidasas/genética , Hexosaminidasas/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Pyroglyphidae/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Electricidad Estática , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA