Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Cell ; 83(12): 2077-2090.e12, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209685

RESUMEN

Autophagy is a conserved intracellular degradation pathway that generates de novo double-membrane autophagosomes to target a wide range of material for lysosomal degradation. In multicellular organisms, autophagy initiation requires the timely assembly of a contact site between the ER and the nascent autophagosome. Here, we report the in vitro reconstitution of a full-length seven-subunit human autophagy initiation supercomplex built on a core complex of ATG13-101 and ATG9. Assembly of this core complex requires the rare ability of ATG13 and ATG101 to switch between distinct folds. The slow spontaneous metamorphic conversion is rate limiting for the self-assembly of the supercomplex. The interaction of the core complex with ATG2-WIPI4 enhances tethering of membrane vesicles and accelerates lipid transfer of ATG2 by both ATG9 and ATG13-101. Our work uncovers the molecular basis of the contact site and its assembly mechanisms imposed by the metamorphosis of ATG13-101 to regulate autophagosome biogenesis in space and time.


Asunto(s)
Autofagosomas , Autofagia , Humanos , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Autofagosomas/metabolismo , Proteínas de la Membrana/metabolismo , Lípidos
2.
Mol Cell ; 71(6): 923-939.e10, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30174292

RESUMEN

The approximately thirty core subunits of kinetochores assemble on centromeric chromatin containing the histone H3 variant CENP-A and connect chromosomes with spindle microtubules. The chromatin proximal 16-subunit CCAN (constitutive centromere associated network) creates a mechanically stable bridge between CENP-A and the kinetochore's microtubule-binding machinery, the 10-subunit KMN assembly. Here, we reconstituted a stoichiometric 11-subunit human CCAN core that forms when the CENP-OPQUR complex binds to a joint interface on the CENP-HIKM and CENP-LN complexes. The resulting CCAN particle is globular and connects KMN and CENP-A in a 26-subunit recombinant particle. The disordered, basic N-terminal tail of CENP-Q binds microtubules and promotes accurate chromosome alignment, cooperating with KMN in microtubule binding. The N-terminal basic tail of the NDC80 complex, the microtubule-binding subunit of KMN, can functionally replace the CENP-Q tail. Our work dissects the connectivity and architecture of CCAN and reveals unexpected functional similarities between CENP-OPQUR and the NDC80 complex.


Asunto(s)
Proteínas Cromosómicas no Histona/ultraestructura , Cinetocoros/fisiología , Cinetocoros/ultraestructura , Centrómero/fisiología , Proteína A Centromérica/metabolismo , Proteína A Centromérica/ultraestructura , Proteínas Cromosómicas no Histona/metabolismo , Proteínas del Citoesqueleto , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiología , Proteínas Nucleares/metabolismo
3.
Nature ; 542(7642): 498-502, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28102834

RESUMEN

In mitosis, for each daughter cell to inherit an accurate copy of the genome from the mother cell, sister chromatids in the mother cell must attach to microtubules emanating from opposite poles of the mitotic spindle, a process known as bi-orientation. A surveillance mechanism, termed the spindle assembly checkpoint (SAC), monitors the microtubule attachment process and can temporarily halt the separation of sister chromatids and the completion of mitosis until bi-orientation is complete. SAC failure results in abnormal chromosome numbers, termed aneuploidy, in the daughter cells, a hallmark of many tumours. The HORMA-domain-containing protein mitotic arrest deficient 2 (MAD2) is a subunit of the SAC effector mitotic checkpoint complex (MCC). Structural conversion from the open to the closed conformation of MAD2 is required for MAD2 to be incorporated into the MCC. In vitro, MAD2 conversion and MCC assembly take several hours, but in cells the SAC response is established in a few minutes. Here, to address this discrepancy, we reconstituted a near-complete SAC signalling system with purified components and monitored assembly of the MCC in real time. A marked acceleration in MAD2 conversion and MCC assembly was observed when monopolar spindle 1 (MPS1) kinase phosphorylated the MAD1-MAD2 complex, triggering it to act as the template for MAD2 conversion and therefore contributing to the establishment of a physical platform for MCC assembly. Thus, catalytic activation of the SAC depends on regulated protein-protein interactions that accelerate the spontaneous but rate-limiting conversion of MAD2 required for MCC assembly.


Asunto(s)
Biocatálisis , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Proteínas Mad2/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Cinética , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Proteínas Tirosina Quinasas/metabolismo , Huso Acromático/metabolismo , Factores de Tiempo
4.
Mol Cell ; 57(5): 765-766, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25747656

RESUMEN

The spindle assembly checkpoint promotes chromosome bi-orientation and halts mitotic progression in the presence of improper kinetochore-microtubule attachments. Knl1, a kinetochore protein, acts as a scaffold for SAC signaling. A new study unveils remarkable complexity in the interplay of Knl1 phosphorylation and SAC function (Vleugel et al., 2015).


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa
5.
Nature ; 537(7619): 249-253, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27580032

RESUMEN

Chromosomes are carriers of genetic material and their accurate transfer from a mother cell to its two daughters during cell division is of paramount importance for life. Kinetochores are crucial for this process, as they connect chromosomes with microtubules in the mitotic spindle. Kinetochores are multi-subunit complexes that assemble on specialized chromatin domains, the centromeres, that are able to enrich nucleosomes containing the histone H3 variant centromeric protein A (CENP-A). A group of several additional CENPs, collectively known as constitutive centromere associated network (CCAN), establish the inner kinetochore, whereas a ten-subunit assembly known as the KMN network creates a microtubule-binding site in the outer kinetochore. Interactions between CENP-A and two CCAN subunits, CENP-C and CENP-N, have been previously described, but a comprehensive understanding of CCAN organization and of how it contributes to the selective recognition of CENP-A has been missing. Here we use biochemical reconstitution to unveil fundamental principles of kinetochore organization and function. We show that cooperative interactions of a seven-subunit CCAN subcomplex, the CHIKMLN complex, determine binding selectivity for CENP-A over H3-nucleosomes. The CENP-A:CHIKMLN complex binds directly to the KMN network, resulting in a 21-subunit complex that forms a minimal high-affinity linkage between CENP-A nucleosomes and microtubules in vitro. This structural module is related to fungal point kinetochores, which bind a single microtubule. Its convolution with multiple CENP-A proteins may give rise to the regional kinetochores of higher eukaryotes, which bind multiple microtubules. Biochemical reconstitution paves the way for mechanistic and quantitative analyses of kinetochores.


Asunto(s)
Cinetocoros/química , Cinetocoros/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Autoantígenos/metabolismo , Centrómero/química , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/metabolismo , Humanos , Microtúbulos/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Huso Acromático
6.
Mol Cell ; 44(1): 147-59, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21981925

RESUMEN

The ubiquitin-specific protease USP7/HAUSP regulates p53 and MDM2 levels, and cellular localization of FOXO4 and PTEN, and hence is critically important for their role in cellular processes. Here we show how the 64 kDa C-terminal region of USP7 can positively regulate deubiquitinating activity. We present the crystal structure of this USP7/HAUSP ubiquitin-like domain (HUBL) comprised of five ubiquitin-like (Ubl) domains organized in 2-1-2 Ubl units. The last di-Ubl unit, HUBL-45, is sufficient to activate USP7, through binding to a "switching" loop in the catalytic domain, which promotes ubiquitin binding and increases activity 100-fold. This activation can be enhanced allosterically by the metabolic enzyme GMPS. It binds to the first three Ubl domains (HUBL-123) and hyperactivates USP7 by stabilization of the HUBL-45-dependent active state.


Asunto(s)
Ligasas de Carbono-Nitrógeno/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Regulación de la Expresión Génica , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina/química , Sitio Alostérico , Dominio Catalítico , Línea Celular Tumoral , Humanos , Cinética , Mutación Puntual , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Peptidasa Específica de Ubiquitina 7
7.
FEBS Lett ; 598(1): 114-126, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567770

RESUMEN

Autophagy is a process of regulated degradation. It eliminates damaged and unnecessary cellular components by engulfing them with a de novo-generated organelle: the double-membrane autophagosome. The past three decades have provided us with a detailed parts list of the autophagy initiation machinery, have developed important insights into how these processes function and have identified regulatory proteins. It is now clear that autophagosome biogenesis requires the timely assembly of a complex machinery. However, it is unclear how a putative stable machine is assembled and disassembled and how the different parts cooperate to perform its overall function. Although they have long been somewhat enigmatic in their precise role, HORMA domain proteins (first identified in Hop1p, Rev7p and MAD2 proteins) autophagy-related protein 13 (ATG13) and ATG101 of the ULK-kinase complex have emerged as important coordinators of the autophagy-initiating subcomplexes. Here, we will particularly focus on ATG13 and ATG101 and the role of their unusual metamorphosis in initiating autophagosome biogenesis. We will also explore how this metamorphosis could potentially be purposefully rate-limiting and speculate on how it could regulate the spontaneous self-assembly of the autophagy-initiating machinery.


Asunto(s)
Autofagosomas , Autofagia , Proteínas Relacionadas con la Autofagia/genética , Autofagia/fisiología , Proteínas Mad2
8.
EMBO Rep ; 12(4): 365-72, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21415856

RESUMEN

USP4 is a member of the ubiquitin-specific protease (USP) family of deubiquitinating enzymes that has a role in spliceosome regulation. Here, we show that the crystal structure of the minimal catalytic domain of USP4 has the conserved USP-like fold with its typical ubiquitin-binding site. A ubiquitin-like (Ubl) domain inserted into the catalytic domain has autoregulatory function. This Ubl domain can bind to the catalytic domain and compete with the ubiquitin substrate, partially inhibiting USP4 activity against different substrates. Interestingly, other USPs, such as USP39, could relieve this inhibition.


Asunto(s)
Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Ubiquitina , Proteasas Ubiquitina-Específicas
9.
Autophagy ; : 1-2, 2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37394799

RESUMEN

ABBREVIATIONS: ATG, Autophagy-related, HORMA, protein domain named after HOP1-MAD2-REV7; RB1CC1, RB1 inducible coiled-coil 1; ULK, Unc-51-like kinase.

10.
Commun Biol ; 6(1): 384, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031298

RESUMEN

The Shieldin complex represses end resection at DNA double-strand breaks (DSBs) and thereby serves as a pro-non homologous end joining (NHEJ) factor. The molecular details of the assembly of Shieldin and its recruitment to DSBs are unclear. Shieldin contains two REV7 molecules, which have the rare ability to slowly switch between multiple distinct native states and thereby could dynamically control the assembly of Shieldin. Here, we report the identification of a promiscuous DNA binding domain in SHLD3. At the N-terminus, SHLD3 interacts with a dimer of REV7 molecules. We show that the interaction between SHLD3 and the first REV7 is remarkably slow, while in contrast the interaction between SHLD3 and SHLD2 with a second REV7 molecule is fast and does not require structural remodeling. Overall, these results provide insights into the rate-limiting step of the molecular assembly of the Shieldin complex and its recruitment at DNA DSBs.


Asunto(s)
Proteínas de Ciclo Celular , Reparación del ADN por Unión de Extremidades , Proteínas Mad2/química , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , ADN/genética , ADN/metabolismo
11.
Biochem Soc Trans ; 40(3): 539-45, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22616864

RESUMEN

Ubiquitin conjugation and deconjugation provides a powerful signalling system to change the fate of its target enzymes. Ubiquitination levels are organized through a balance between ubiquitinating E1, E2 and E3 enzymes and deubiquitination by DUBs (deubiquitinating enzymes). These enzymes are tightly regulated to control their activity. In the present article, we discuss the different ways in which DUBs of the USP (ubiquitin-specific protease) family are regulated by internal domains with a UBL (ubiquitin-like) fold. The UBL domain in USP14 is important for its localization at the proteasome, which enhances catalysis. In contrast, a UBL domain in USP4 binds to the catalytic domain and competes with ubiquitin binding. In this process, the UBL domain mimics ubiquitin and partially inhibits catalysis. In USP7, there are five consecutive UBL domains, of which the last two affect catalytic activity. Surprisingly, they do not act like ubiquitin and activate catalysis rather than inhibiting it. These C-terminal UBL domains promote a conformational change that allows ubiquitin binding and organizes the catalytic centre. Thus it seems that UBL domains have different functions in different USPs. Other proteins can modulate the roles of UBL domains in USP4 and USP7. On one hand, the inhibition of USP4 can be relieved when the UBL is sequestered by another USP. On the other, the activation of USP7 is increased, when the UBL-activated state is stabilized by allosteric binding of GMP synthetase. Altogether, UBL domains appear to be able to regulate catalytic activity in USPs, but they can use widely different mechanisms of action, in which they may, as in USP4, or may not, as in USP7, use the direct resemblance to ubiquitin.


Asunto(s)
Endopeptidasas/química , Endopeptidasas/metabolismo , Animales , Biocatálisis , Humanos , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Proteasas Ubiquitina-Específicas
12.
Nat Commun ; 12(1): 5421, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521823

RESUMEN

MAD2L2 (REV7) plays an important role in DNA double-strand break repair. As a member of the shieldin complex, consisting of MAD2L2, SHLD1, SHLD2 and SHLD3, it controls DNA repair pathway choice by counteracting DNA end-resection. Here we investigated the requirements for shieldin complex assembly and activity. Besides a dimerization-surface, HORMA-domain protein MAD2L2 has the extraordinary ability to wrap its C-terminus around SHLD3, likely creating a very stable complex. We show that appropriate function of MAD2L2 within shieldin requires its dimerization, mediated by SHLD2 and accelerating MAD2L2-SHLD3 interaction. Dimerization-defective MAD2L2 impairs shieldin assembly and fails to promote NHEJ. Moreover, MAD2L2 dimerization, along with the presence of SHLD3, allows shieldin to interact with the TRIP13 ATPase, known to drive topological switches in HORMA-domain proteins. We find that appropriate levels of TRIP13 are important for proper shieldin (dis)assembly and activity in DNA repair. Together our data provide important insights in the dependencies for shieldin activity.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas de Ciclo Celular/genética , Reparación del ADN , Proteínas de Unión al ADN/genética , ADN/genética , Proteínas Mad2/genética , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Cisplatino/farmacología , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Proteínas Mad2/química , Proteínas Mad2/metabolismo , Ratones , Ftalazinas/farmacología , Piperazinas/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
J Am Chem Soc ; 132(26): 8834-5, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20540574

RESUMEN

We demonstrate that oxime ligation is an efficient, straightforward, and generally applicable strategy for generating nonhydrolyzable ubiquitin (Ub)-isopeptide isosteres. We synthesized nonhydrolyzable K48- and K63-linked Ub-isopeptide isosteres to investigate the selectivity of deubiquitinating enzymes for specific linkages employing surface plasmon resonance spectroscopy. The results indicate that deubiquitinating enzymes specifically recognize the local peptide sequence flanking Ub-branched lysine residues in target proteins. The described strategy allows the systematic investigation of sequence requirements for substrate selectivity of deubiquitinating enzymes.


Asunto(s)
Técnicas Biosensibles/métodos , Endopeptidasas/metabolismo , Péptidos/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Conformación Proteica , Especificidad por Sustrato , Ubiquitina/química
14.
Curr Biol ; 27(19): 2915-2927.e7, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28943088

RESUMEN

The spindle assembly checkpoint (SAC) prevents premature sister chromatid separation during mitosis. Phosphorylation of unattached kinetochores by the Mps1 kinase promotes recruitment of SAC machinery that catalyzes assembly of the SAC effector mitotic checkpoint complex (MCC). The SAC protein Bub3 is a phospho-amino acid adaptor that forms structurally related stable complexes with functionally distinct paralogs named Bub1 and BubR1. A short motif ("loop") of Bub1, but not the equivalent loop of BubR1, enhances binding of Bub3 to kinetochore phospho-targets. Here, we asked whether the BubR1 loop directs Bub3 to different phospho-targets. The BubR1 loop is essential for SAC function and cannot be removed or replaced with the Bub1 loop. BubR1 loop mutants bind Bub3 and are normally incorporated in MCC in vitro but have reduced ability to inhibit the MCC target anaphase-promoting complex (APC/C), suggesting that BubR1:Bub3 recognition and inhibition of APC/C requires phosphorylation. Thus, small sequence differences in Bub1 and BubR1 direct Bub3 to different phosphorylated targets in the SAC signaling cascade.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Huso Acromático/metabolismo
15.
Nat Commun ; 7: 11407, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27095104

RESUMEN

Accurate chromosome segregation during cell division is crucial for propagating life and protects from cellular transformation. The SKAP:Astrin heterodimer localizes to spindle microtubules and to mature microtubule-kinetochore attachments during mitosis. Depletion of either subunit disrupts spindle structure and destabilizes kinetochore-microtubule attachments. Here, we identify molecular requirements for the inter-subunit interaction of SKAP and Astrin, and discuss requirements for their kinetochore recruitment. We also identify and characterize a microtubule-binding domain in SKAP, distinct from the SXIP motif that mediates end binding (EB) protein binding and plus end tracking, and show that it stimulates the growth-rate of microtubules, possibly through a direct interaction with tubulin. Mutations targeting this microtubule-binding domain impair microtubule plus-end tracking but not kinetochore targeting, and recapitulate many effects observed during depletion of SKAP. Collectively, our studies represent the first thorough mechanistic analysis of SKAP and Astrin, and significantly advance our functional understanding of these important mitotic proteins.


Asunto(s)
Proteínas de Ciclo Celular/química , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/metabolismo , Mitosis , Huso Acromático/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Células HeLa , Humanos , Cinetocoros/ultraestructura , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Huso Acromático/ultraestructura , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
16.
Nat Commun ; 5: 5399, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25404403

RESUMEN

Ubiquitin-specific protease USP4 is emerging as an important regulator of cellular pathways, including the TGF-ß response, NF-κB signalling and splicing, with possible roles in cancer. Here we show that USP4 has its catalytic triad arranged in a productive conformation. Nevertheless, it requires its N-terminal DUSP-Ubl domain to achieve full catalytic turnover. Pre-steady-state kinetics measurements reveal that USP4 catalytic domain activity is strongly inhibited by slow dissociation of ubiquitin after substrate hydrolysis. The DUSP-Ubl domain is able to enhance ubiquitin dissociation, hence promoting efficient turnover. In a mechanism that requires all USP4 domains, binding of the DUSP-Ubl domain promotes a change of a switching loop near the active site. This 'allosteric regulation of product discharge' provides a novel way of regulating deubiquitinating enzymes that may have relevance for other enzyme classes.


Asunto(s)
Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina/metabolismo , Regulación Alostérica , Catálisis , Cristalografía por Rayos X , Humanos , Cinética , Modelos Moleculares , Unión Proteica , Ubiquitina/química , Proteasas Ubiquitina-Específicas
17.
Chem Biol ; 18(12): 1550-61, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22195557

RESUMEN

Ubiquitin-specific proteases (USPs) are papain-like isopeptidases with variable inter- and intramolecular regulatory domains. To understand the effect of these domains on USP activity, we have analyzed the enzyme kinetics of 12 USPs in the presence and absence of modulators using synthetic reagents. This revealed variations of several orders of magnitude in both the catalytic turnover (k(cat)) and ubiquitin (Ub) binding (K(M)) between USPs. Further activity modulation by intramolecular domains affects both the k(cat) and K(M), whereas the intermolecular activators UAF1 and GMPS mainly increase the k(cat). Also, we provide the first comprehensive analysis comparing Ub chain preference. USPs can hydrolyze all linkages and show modest Ub-chain preferences, although some show a lack of activity toward linear di-Ub. This comprehensive kinetic analysis highlights the variability within the USP family.


Asunto(s)
Endopeptidasas/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Endopeptidasas/química , Endopeptidasas/genética , Guanosina Monofosfato/metabolismo , Humanos , Cinética , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tionucleótidos/metabolismo , Ubiquitina/química , Proteasas Ubiquitina-Específicas
18.
Biochemistry ; 45(44): 13183-92, 2006 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-17073440

RESUMEN

The fusion of different protein domains via peptide linkers is a powerful, modular approach to obtain proteins with new functions. A detailed understanding of the conformational behavior of peptide linkers is important for applications such as fluorescence resonance energy transfer (FRET)-based sensor proteins and multidomain proteins involved in multivalent interactions. To investigate the conformational behavior of flexible glycine- and serine-containing peptide linkers, we constructed a series of fusion proteins of enhanced cyan and yellow fluorescent proteins (ECFP-linker-EYFP) in which the linker length was systematically varied by incorporating between 1 and 9 GGSGGS repeats. As expected, both steady-state and time-resolved fluorescence measurements showed a decrease in energy transfer with increasing linker length. The amount of energy transfer observed in these fusion proteins can be quantitatively understood by simple models that describe the flexible linker as a worm-like chain with a persistence length of 4.5 A or a Gaussian chain with a characteristic ratio of 2.3. The implications of our results for understanding the properties of FRET-based sensors and other fusion proteins with Gly/Ser linkers are discussed.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Fluorescentes Verdes/química , Proteínas Luminiscentes/química , Péptidos/química , Secuencia de Aminoácidos , Secuencia de Bases , ADN , Cartilla de ADN , Transferencia Resonante de Energía de Fluorescencia , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA