Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurosci ; 29(4): 1202-11, 2009 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-19176828

RESUMEN

Chronic postnatal hypoxia causes an apparent loss of cortical neurons that is reversed during recovery (Fagel et al., 2006). The cellular and molecular mechanisms underlying this plasticity are not understood. Here, we show that chronic hypoxia from postnatal days 3 (P3) to 10 causes a 30% decrease in cortical neurons and a 24% decrease in cortical volume. T-brain-1 (Tbr1)(+) and SMI-32(+) excitatory neuron numbers were completely recovered 1 month after the insult, but the mice showed a residual deficit in Parvalbumin(+) and Calretinin(+) GABAergic interneurons. In contrast, hypoxic mice carrying a disrupted fibroblast growth factor receptor-1 (Fgfr1) gene in GFAP+ cells [Fgfr1 conditional knock-out (cKO)], demonstrated a persistent loss of excitatory cortical neurons and a worsening of the interneuron defect. Labeling proliferating progenitors at P17 revealed increased generation of cortical NeuN(+) and Tbr1(+) excitatory neurons in wild-type mice subjected to hypoxic insult, whereas Fgfr1 cKO failed to mount a cortical neurogenetic response. Hypoxic wild-type mice also demonstrated a twofold increase in cell proliferation in the subventricular zone (SVZ) at P17 and a threefold increase in neurogenesis in the olfactory bulb (OB) at P48, compared with normoxic mice. In contrast, Fgfr1 cKO mice had decreased SVZ cell proliferation and curtailed reactive neurogenesis in the OB. Thus, the activation of FGFR-1 in GFAP+ cells is required for neuronal recovery after neonatal hypoxic injury, which is attributable in part to enhanced cortical and OB neurogenesis. In contrast, there is incomplete recovery of inhibitory neurons after injury, which may account for persistent behavioral deficits.


Asunto(s)
Corteza Cerebral/patología , Hipoxia/patología , Regeneración Nerviosa/fisiología , Neuronas/fisiología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/fisiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Proliferación Celular , Corteza Cerebral/fisiopatología , Creatinina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Hipoxia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/fisiología , Bulbo Olfatorio , Parvalbúminas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas de Dominio T Box
2.
Neuroscientist ; 13(2): 173-85, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17404377

RESUMEN

Three main cellular components have been described in the CNS: neurons, astrocytes, and oligodendrocytes. In the past 10 years, lineage studies first based on retroviruses in the embryonic CNS and then by genetic fate mapping in both the prenatal and postnatal CNS have proposed that astroglial cells can be progenitors for neurons and oligodendrocytes. Hence, the population of astroglial cells is increasingly recognized as heterogeneous and diverse, encompassing cell types performing widely different roles in development and plasticity. Astroglial cells populating the neurogenic niches increase their proliferation after perinatal injury and in young mice can differentiate into neurons and oligodendrocytes that migrate to the cerebral cortex, replacing the cells that are lost. Although much remains to be learned about this process, it appears that the up-regulation of the Fibroblast growth factor receptor is critical for mediating the injury-induced increase in cell division and perhaps for the neuronal differentiation of astroglial cells.


Asunto(s)
Astrocitos/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Sistema Nervioso Central/crecimiento & desarrollo , Células Madre/metabolismo , Animales , Astrocitos/citología , Proliferación Celular , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Humanos , Regeneración Nerviosa/genética , Plasticidad Neuronal/genética , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Células Madre/citología
3.
Int J Dev Neurosci ; 27(8): 863-71, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19482072

RESUMEN

Premature birth is a growing and significant public health problem because of the large number of infants that survive with neurodevelopmental sequelae from brain injury. Recent advances in neuroimaging have shown that although some neuroanatomical structures are altered, others improve over time. This review outlines recent insights into brain structure and function in these preterm infants at school age and relevant animal models. These animal models have provided scientists with an opportunity to explore in depth the molecular and cellular mechanisms of injury as well as the potential of the brain for recovery. The endogenous potential that the brain has for neurogenesis and gliogenesis, and how environment contributes to recovery, are also outlined. These preclinical models will provide important insights into the genetic and epigenetic mechanisms responsible for variable degrees of injury and recovery, permitting the exploration of targeted therapies to facilitate recovery in the developing preterm brain.


Asunto(s)
Lesiones Encefálicas , Discapacidades del Desarrollo , Recien Nacido Prematuro , Neurogénesis/fisiología , Animales , Conducta/fisiología , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/patología , Discapacidades del Desarrollo/fisiopatología , Humanos , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/patología , Hipoxia-Isquemia Encefálica/fisiopatología , Recién Nacido , Modelos Animales , Transducción de Señal/fisiología
4.
Biol Psychiatry ; 63(10): 953-62, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17988653

RESUMEN

BACKGROUND: Motor hyperactivity due to hyper-dopaminergic neurotransmission in the basal ganglia is well characterized; much less is known about the role of the neocortex in controlling motor behavior. METHODS: Locomotor behavior and motor, associative, and spatial learning were examined in mice with conditional null mutations of fibroblast growth factor receptor 1 (Fgfr1) restricted to telencephalic neural precursors (Fgfr1(f/f;hGfapCre)). Locomotor responses to a dopamine agonist (Amphetamine 2 mg/kg and Methylphenidate 10 mg/kg) and antagonists (SCH233390 .025 mg/kg and Haloperidol .2 mg/kg) were assessed. Stereological and morphological characterization of various monoaminergic, excitatory, and inhibitory neuronal subtypes was performed. RESULTS: Fgfr1(f/f;hGfapCre) mice have spontaneous locomotor hyperactivity characterized by longer bouts of locomotion and fewer resting points that is significantly reduced by the D1 and D2 receptor antagonists. No differences in dopamine transporter, tyrosine hydroxylase, or serotonin immunostaining were observed in Fgfr1(f/f;hGfapCre) mice. There was no change in cortical pyramidal neurons, but parvalbumin+, somatostatin+, and calbindin+ inhibitory interneurons were reduced in number in the cerebral cortex. The decrease in parvalbumin+ interneurons in cortex correlated with the extent of hyperactivity. CONCLUSIONS: Dysfunction in specific inhibitory cortical circuits might account for deficits in behavioral control, providing insights into the neurobiology of psychiatric disorders.


Asunto(s)
Corteza Cerebral/patología , Factor 1 de Crecimiento de Fibroblastos/genética , Hipercinesia/genética , Hipercinesia/patología , Inhibición Neural/genética , Neuronas/patología , Anfetamina/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Monoaminas Biogénicas/metabolismo , Recuento de Células/métodos , Estimulantes del Sistema Nervioso Central/uso terapéutico , Modelos Animales de Enfermedad , Dopaminérgicos/administración & dosificación , Conducta Exploratoria/efectos de los fármacos , Factor 1 de Crecimiento de Fibroblastos/deficiencia , Glutamato Descarboxilasa/metabolismo , Hipercinesia/tratamiento farmacológico , Locomoción/efectos de los fármacos , Locomoción/genética , Masculino , Metilfenidato/uso terapéutico , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
5.
Exp Neurol ; 199(1): 77-91, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-15916762

RESUMEN

Most regions of the mature mammalian brain, including the cerebral cortex, appear to be unable to support the genesis of new neurons. Here, we report that a low level of neurogenesis occurs in the cerebral cortex of the infant mouse brain and is enhanced by chronic perinatal hypoxia. When mice were reared in a low-oxygen environment from postnatal days 3 to 11, approximately 30% of the cortical neurons were lost after the insult; yet this damage was transient. The loss of cortical neuron number, cortical volume, and brain weight were all reversed during the recovery period. At P18, 7 days after the cessation of hypoxia, there was a marked increase in astroglial cell proliferation within the SVZ, as assessed by 5-bromodeoxyuridine (BrdU) incorporation in S-phase cells. One month after BrdU incorporation, 40% more BrdU-positive cells were found in the cerebral cortex of hypoxic-reared as compared to normoxic control mice. Among these newly generated cortical cells, approximately 45% were oligodendrocytes, 35% were astrocytes, and 10% were neurons in both hypoxic and normoxic mice. However, twice as many BrdU-labeled cells expressed neuronal markers in the neocortex in mice recovering from hypoxia as compared to controls. In both hypoxic-reared and normoxic infant/juvenile mice, putative neuroblasts could be seen detaching from the forebrain subventricular zone, migrating through the subcortical white matter and entering the lower cortical layers, 5 to 11 days after their last mitotic division. We suggest that cortical neurogenesis may play a significant role in repairing neuronal losses after neonatal injury.


Asunto(s)
Corteza Cerebral/patología , Hipoxia/patología , Hipoxia/fisiopatología , Neuronas/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Recuento de Células/métodos , Diferenciación Celular/fisiología , Proliferación Celular , Tamaño de la Célula , Corteza Cerebral/crecimiento & desarrollo , Ventrículos Cerebrales/fisiología , Proteínas ELAV/metabolismo , Inmunohistoquímica/métodos , Indoles , Ratones , Ratones Endogámicos C57BL , Fosfopiruvato Hidratasa/metabolismo , Factores de Tiempo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA