Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Ecol Biogeogr ; 29(2): 281-294, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32063745

RESUMEN

AIM: Alien plant species can cause severe ecological and economic problems, and therefore attract a lot of research interest in biogeography and related fields. To identify potential future invasive species, we need to better understand the mechanisms underlying the abundances of invasive tree species in their new ranges, and whether these mechanisms differ between their native and alien ranges. Here, we test two hypotheses: that greater relative abundance is promoted by (a) functional difference from locally co-occurring trees, and (b) higher values than locally co-occurring trees for traits linked to competitive ability. LOCATION: Global. TIME PERIOD: Recent. MAJOR TAXA STUDIED: Trees. METHODS: We combined three global plant databases: sPlot vegetation-plot database, TRY plant trait database and Global Naturalized Alien Flora (GloNAF) database. We used a hierarchical Bayesian linear regression model to assess the factors associated with variation in local abundance, and how these relationships vary between native and alien ranges and depend on species' traits. RESULTS: In both ranges, species reach highest abundance if they are functionally similar to co-occurring species, yet are taller and have higher seed mass and wood density than co-occurring species. MAIN CONCLUSIONS: Our results suggest that light limitation leads to strong environmental and biotic filtering, and that it is advantageous to be taller and have denser wood. The striking similarities in abundance between native and alien ranges imply that information from tree species' native ranges can be used to predict in which habitats introduced species may become dominant.

2.
Environ Manage ; 58(1): 164-74, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26994604

RESUMEN

The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.


Asunto(s)
Riego Agrícola/métodos , Productos Agrícolas/crecimiento & desarrollo , Ecosistema , Triticum/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Biodiversidad , Región Mediterránea , España
3.
PhytoKeys ; 244: 57-76, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006938

RESUMEN

Assessing the taxonomic status of closely related taxa is crucial in plant systematics and can have important implications for conservation and human plant use. Ericaandevalensis Cabezudo & Rivera is a metallophyte endemic species from highly metal-polluted soils of SW Iberian Peninsula, an area with a mining history going back more than 5,000 years. Ericaandevalensis is closely related to Ericamackayana Bab., a northern Iberian species also present in western Ireland. The status of E.andevalensis as a species or subspecies subordinated to E.mackayana is subject to debate. Here, we assessed the genetic and phenotypic relationship between both species, including the population structure of E.andevalensis. We used high throughput sequencing to determine genome-wide Single Nucleotide Polymorphisms (SNPs), and morphometric analyses from 35 reproductive and vegetative traits. The morphological analysis showed at least eight characters that can discriminate the two species, from which ovary hairiness and the size of leaf glandular hairs were the most informative. Genetic analyses showed that each species formed a monophyletic cluster with full support, separated by an interspecific genetic distance >4-fold higher than intra-specific distance. Population genetic analyses of E.andevalensis shows that populations are highly structured, with the Portuguese one as the most isolated and less variable. These results support the recognition of E.andevalensis as a distinct species with a highly constrained ecological requirements and a narrow geographic distribution, but with a limited gene flow between populations. We discuss the implications of these outcomes in conservation policies and potential uses of E.andevalensis such as decontamination of polluted soils.

4.
PhytoKeys ; 244: 127-150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027483

RESUMEN

Estimates of the number of vascular plant species currently under threat of extinction are shockingly high, with the highest extinction rates reported for narrow-range, woody plants, especially in biodiversity hotspots with Mediterranean and tropical climates. The large genus Erica is a prime example, as a large proportion of its 851 species, all shrubs or small trees, are endemic to the Cape Floristic Region (CFR) of South Africa. Almost two hundred are known to be threatened and a further hundred are 'Data Deficient'. We need to target conservation efforts and research to fill the most problematic knowledge gaps. This can be especially challenging in large genera, such as Erica, with numerous threatened species that are closely related. One approach involves combining knowledge of phylogenetic diversity with that of IUCN threat status to identify the most Evolutionarily Distinct and Globally Endangered (EDGE) species. We present an expanded and improved phylogenetic hypothesis for Erica (representing 65% of described species diversity) and combine this with available threat and distribution data to identify species and geographic areas that could be targeted for conservation effort to maximise preservation of phylogenetic diversity (PD). The resulting 39 EDGE taxa include 35 from the CFR. A further 32 high PD, data deficient taxa are mostly from outside the CFR, reflecting the low proportion of assessed taxa outside South Africa. The most taxon-rich areas are found in the south-western CFR. They are not the most phylogenetically diverse, but do include the most threatened PD. These results can be cross-referenced to existing living and seed-banked ex situ collections and used to target new and updated threat assessments and conservation action.

5.
Ann Bot ; 111(2): 151-72, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23223202

RESUMEN

BACKGROUND: Heathlands are dynamic plant communities characterized by a high cover of sclerophyllous, ericoid shrubs that develop over nutrient-poor soils. Interest in the preservation of these habitats in Europe has increased over the last decades, but over this time there has been a general decline in habitat quality, affecting community structure, ecosystem functions and biodiversity. Negative drivers that trigger these changes include land-use changes (i.e. habitat destruction and fragmentation), pollution, climate change, natural succession and human management, as well as the presence of invasive exotic species. SCOPE: Based on recent scientific literature, the effect of each of these potential drivers on a wide set of factors, including physiological traits, species richness and diversity, community structure, ecosystem functions and soil conditions, is reviewed. The effects of these drivers are generally understood, but the direction and magnitude of factor interactions, whenever studied, have shown high variability. CONCLUSIONS: Habitat loss and fragmentation affect sensitive species and ecosystem functions. The nature of the surrounding area will condition the quality of the heathland remnants by, for example, propagule pressure from invasive species. The dominant ericoid shrubs can be out-competed by vigorous perennial grasses with increased atmospheric nitrogen deposition, although interactions with climate and management practices may either counteract or enhance this process. Grazing or periodic burning promotes heath loss but site-specific combined treatments maintain species diversity and community structure. Climate change alone moderately affects plant diversity, community structure and ecosystem functions. Combined with other factors, climatic changes will condition heath development, mainly with regard to key aspects such as seed set and seedling establishment, rare species occurrence and nutrient cycling in the soil. It is essential to address the effects of not only individual factors, but their interactions, together with land-use history, on heathland development and conservation in order to predict habitat response to future scenarios.


Asunto(s)
Biodiversidad , Dióxido de Carbono/efectos adversos , Cambio Climático , Ecosistema , Contaminación Ambiental , Conservación de los Recursos Naturales , Ericaceae/crecimiento & desarrollo , Europa (Continente) , Eutrofización , Predicción , Humanos , Especies Introducidas , Plantas , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA