Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 160(3): 542-53, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25635461

RESUMEN

Excitatory amino acid transporters (EAATs) are essential for terminating glutamatergic synaptic transmission. They are not only coupled glutamate/Na(+)/H(+)/K(+) transporters but also function as anion-selective channels. EAAT anion channels regulate neuronal excitability, and gain-of-function mutations in these proteins result in ataxia and epilepsy. We have combined molecular dynamics simulations with fluorescence spectroscopy of the prokaryotic homolog GltPh and patch-clamp recordings of mammalian EAATs to determine how these transporters conduct anions. Whereas outward- and inward-facing GltPh conformations are nonconductive, lateral movement of the glutamate transport domain from intermediate transporter conformations results in formation of an anion-selective conduction pathway. Fluorescence quenching of inserted tryptophan residues indicated the entry of anions into this pathway, and mutations of homologous pore-forming residues had analogous effects on GltPh simulations and EAAT2/EAAT4 measurements of single-channel currents and anion/cation selectivities. These findings provide a mechanistic framework of how neurotransmitter transporters can operate as anion-selective and ligand-gated ion channels.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Aniones/metabolismo , Proteínas Arqueales/química , Proteínas de Transporte de Glutamato en la Membrana Plasmática/química , Simulación de Dinámica Molecular , Pyrococcus horikoshii/química , Secuencia de Aminoácidos , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Proteínas Arqueales/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/genética , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Humanos , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Ratas , Alineación de Secuencia
2.
J Neurosci ; 42(15): 3080-3095, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35241492

RESUMEN

ClC-3, ClC-4, and ClC-5 are electrogenic chloride/proton exchangers that can be found in endosomal compartments of mammalian cells. Although the association with genetic diseases and the severe phenotype of knock-out animals illustrate their physiological importance, the cellular functions of these proteins have remained insufficiently understood. We here study the role of two Clcn3 splice variants, ClC-3b and ClC-3c, in granular exocytosis and catecholamine accumulation of adrenal chromaffin cells using a combination of high-resolution capacitance measurements, amperometry, protein expression/gene knock out/down, rescue experiments, and confocal microscopy. We demonstrate that ClC-3c resides in immature as well as in mature secretory granules, where it regulates catecholamine accumulation and contributes to the establishment of the readily releasable pool of secretory vesicles. The lysosomal splice variant ClC-3b contributes to vesicle priming only with low efficiency and leaves the vesicular catecholamine content unaltered. The related Cl-/H+ antiporter ClC-5 undergoes age-dependent downregulation in wild-type conditions. Its upregulation in Clcn3-/- cells partially rescues the exocytotic mutant defect. Our study demonstrates how different CLC transporters with similar transport functions, but distinct localizations can contribute to vesicle functions in the regulated secretory pathway of granule secretion in chromaffin cells.SIGNIFICANCE STATEMENT Cl-/H+ exchangers are expressed along the endosomal/lysosomal system of mammalian cells; however, their exact subcellular functions have remained insufficiently understood. We used chromaffin cells, a system extensively used to understand presynaptic mechanisms of synaptic transmission, to define the role of CLC exchangers in neurosecretion. Disruption of ClC-3 impairs catecholamine accumulation and secretory vesicle priming. There are multiple ClC-3 splice variants, and only expression of one, ClC-3c, in double Cl-/H+ exchanger-deficient cells fully rescues the WT phenotype. Another splice variant, ClC-3b, is present in lysosomes and is not necessary for catecholamine secretion. The distinct functions of ClC-3c and ClC-3b illustrate the impact of expressing multiple CLC transporters with similar transport functions and separate localizations in different endosomal compartments.


Asunto(s)
Células Cromafines , Protones , Animales , Catecolaminas/metabolismo , Cloruros/metabolismo , Células Cromafines/metabolismo , Exocitosis/fisiología , Mamíferos , Ratones , Ratones Noqueados , Vesículas Secretoras/metabolismo
3.
EMBO J ; 38(19): e101468, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31506973

RESUMEN

Excitatory amino acid transporters (EAATs) mediate glial and neuronal glutamate uptake to terminate synaptic transmission and to ensure low resting glutamate concentrations. Effective glutamate uptake is achieved by cotransport with 3 Na+ and 1 H+ , in exchange with 1 K+ . The underlying principles of this complex transport stoichiometry remain poorly understood. We use molecular dynamics simulations and electrophysiological experiments to elucidate how mammalian EAATs harness K+ gradients, unlike their K+ -independent prokaryotic homologues. Glutamate transport is achieved via elevator-like translocation of the transport domain. In EAATs, glutamate-free re-translocation is prevented by an external gate remaining open until K+  binding closes and locks the gate. Prokaryotic GltPh contains the same K+ -binding site, but the gate can close without K+ . Our study provides a comprehensive description of K+ -dependent glutamate transport and reveals a hitherto unknown allosteric coupling mechanism that permits adaptions of the transport stoichiometry without affecting ion or substrate binding.


Asunto(s)
Proteínas de Transporte de Glutamato en la Membrana Plasmática/química , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Potasio/metabolismo , Regulación Alostérica , Transporte Biológico , Células HEK293 , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Transmisión Sináptica
4.
Epilepsia ; 63(2): 388-401, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34961934

RESUMEN

OBJECTIVE: Mutations in the gene solute carrier family member 1A2 (SLC1A2) encoding the excitatory amino acid transporter 2 (EAAT2) are associated with severe forms of epileptic encephalopathy. EAAT2 is expressed in glial cells and presynaptic nerve terminals and represents the main l-glutamate uptake carrier in the mammalian brain. It does not only function as a secondary active glutamate transporter, but also as an anion channel. How naturally occurring mutations affect these two transport functions of EAAT2 and how such alterations cause epilepsy is insufficiently understood. METHODS: Here we studied the functional consequences of three disease-associated mutations, which predict amino acid exchanges p.Gly82Arg (G82R), p.Leu85Pro (L85P), and p.Pro289Arg (P289R), by heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch-clamp recordings of EAAT2 l-glutamate transport and anion current. RESULTS: G82R and L85P exchange amino acid residues that contribute to the formation of the EAAT anion pore. They enlarge the pore diameter sufficiently to permit the passage of l-glutamate and thus function as l-glutamate efflux pathways. The mutation P289R decreases l-glutamate uptake, but increases anion currents despite a lower membrane expression. SIGNIFICANCE: l-glutamate permeability of the EAAT anion pore is an unexpected functional consequence of naturally occurring single amino acid substitutions. l-glutamate efflux through mutant EAAT2 anion channels will cause glutamate excitotoxicity and neuronal hyperexcitability in affected patients. Antagonists that selectively suppress the EAAT anion channel function could serve as therapeutic agents in the future.


Asunto(s)
Encefalopatías , Transportador 2 de Aminoácidos Excitadores , Aminoácidos/metabolismo , Animales , Aniones/metabolismo , Transportador 2 de Aminoácidos Excitadores/química , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Mamíferos/metabolismo , Mutación/genética
5.
Neurochem Res ; 47(1): 9-22, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33587237

RESUMEN

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After its release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by excitatory amino acid transporters (EAATs) 1-5, a subfamily of glutamate transporters. The five proteins utilize a complex transport stoichiometry that couples glutamate transport to the symport of three Na+ ions and one H+ in exchange with one K+ to accumulate glutamate against up to 106-fold concentration gradients. They are also anion-selective channels that open and close during transitions along the glutamate transport cycle. EAATs belong to a larger family of secondary-active transporters, the SLC1 family, which also includes purely Na+- or H+-coupled prokaryotic transporters and Na+-dependent neutral amino acid exchangers. In recent years, molecular cloning, heterologous expression, cellular electrophysiology, fluorescence spectroscopy, structural approaches, and molecular simulations have uncovered the molecular mechanisms of coupled transport, substrate selectivity, and anion conduction in EAAT glutamate transporters. Here we review recent findings on EAAT transport mechanisms, with special emphasis on the highly conserved hairpin 2 gate, which has emerged as the central processing unit in many of these functions.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG , Ácido Glutámico , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Aniones/metabolismo , Transporte Biológico , Transportador 1 de Aminoácidos Excitadores/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Ácido Glutámico/metabolismo , Mamíferos/metabolismo
6.
EMBO Rep ; 21(6): e47872, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32390228

RESUMEN

CLC anion/proton exchangers control the pH and [Cl- ] of the endolysosomal system that is essential for cellular nutrient uptake. Here, we use heterologous expression and whole-cell electrophysiology to investigate the regulation of the CLC isoforms ClC-3, ClC-4, and ClC-5 by the adenylic system components ATP, ADP, and AMP. Our results show that cytosolic ATP and ADP but not AMP and Mg2+ -free ADP enhance CLC ion transport. Biophysical analysis reveals that adenine nucleotides alter the ratio between CLC ion transport and CLC gating charge and shift the CLC voltage-dependent activation. The latter effect is suppressed by blocking the intracellular entrance of the proton transport pathway. We suggest, therefore, that adenine nucleotides regulate the internal proton delivery into the CLC transporter machinery and alter the probability of CLC transporters to undergo silent non-transporting cycles. Our findings suggest that the CBS domains in mammalian CLC transporters serve as energy sensors that regulate vesicular Cl- /H+ exchange by detecting changes in the cytosolic ATP/ADP/AMP equilibrium. Such sensing mechanism links the endolysosomal activity to the cellular metabolic state.


Asunto(s)
Canales de Cloruro , Protones , Animales , Aniones/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Concentración de Iones de Hidrógeno , Transporte Iónico
7.
J Biol Chem ; 295(44): 14936-14947, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32820048

RESUMEN

Excitatory amino acid transporters (EAATs) are prototypical dual function proteins that function as coupled glutamate/Na+/H+/K+ transporters and as anion-selective channels. Both transport functions are intimately intertwined at the structural level: Secondary active glutamate transport is based on elevator-like movements of the mobile transport domain across the membrane, and the lateral movement of this domain results in anion channel opening. This particular anion channel gating mechanism predicts the existence of mutant transporters with changed anion channel properties, but without alteration in glutamate transport. We here report that the L46P mutation in the human EAAT2 transporter fulfills this prediction. L46 is a pore-forming residue of the EAAT2 anion channels at the cytoplasmic entrance into the ion conduction pathway. In whole-cell patch clamp recordings, we observed larger macroscopic anion current amplitudes for L46P than for WT EAAT2. Rapid l-glutamate application under forward transport conditions demonstrated that L46P does not reduce the transport rate of individual transporters. In contrast, changes in selectivity made gluconate permeant in L46P EAAT2, and nonstationary noise analysis revealed slightly increased unitary current amplitudes in mutant EAAT2 anion channels. We used unitary current amplitudes and individual transport rates to quantify absolute open probabilities of EAAT2 anion channels from ratios of anion currents by glutamate uptake currents. This analysis revealed up to 7-fold increased absolute open probability of L46P EAAT2 anion channels. Our results reveal an important determinant of the diameter of EAAT2 anion pore and demonstrate the existence of anion channel gating processes outside the EAAT uptake cycle.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Mutación Puntual , Transporte Biológico , Transportador 2 de Aminoácidos Excitadores/química , Humanos , Técnicas de Placa-Clamp , Probabilidad
8.
Epilepsia ; 62(6): 1401-1415, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33951195

RESUMEN

OBJECTIVE: This study was undertaken to expand the phenotypic and genetic spectrum of CLCN4-related epilepsy and to investigate genotype-phenotype correlations. METHODS: We systematically reviewed the phenotypic and genetic spectrum of newly diagnosed and previously reported patients with CLCN4-related epilepsy. Three novel variants identified in four patients reported in this study were evaluated through in silico prediction and functional analysis by Western blot, immunofluorescence, and electrophysiological measurements. RESULTS: Epilepsy was diagnosed in 54.55% (24/44) of individuals with CLCN4-related disorders and was drug-resistant in most cases. Of 24 patients, 15 had epileptic encephalopathy and four died at an early age; 69.57% of patients had seizure onset within the first year of life. Myoclonic seizures are the most common seizure type, and 56.25% of patients presented multiple seizure types. Notably, seizure outcome was favorable in individuals with only one seizure type. All patients showed intellectual disability, which was severe in 65.22% of patients. Additional common features included language delay, behavioral disorders, and dysmorphic features. Five patients benefitted from treatment with lamotrigine. Most variants, which were mainly missense (79.17%), were inherited (70.83%). Whereas frameshift, intragenic deletion, or inherited variants were associated with milder phenotypes, missense or de novo variants led to more severe phenotypes. All evaluated CLCN4 variants resulted in loss of function with reduced ClC-4 currents. Nonetheless, genotype-phenotype relationships for CLCN4-related epilepsy are not straightforward, as phenotypic variability was observed in recurrent variants and within single families. SIGNIFICANCE: Pathogenic CLCN4 variants contribute significantly to the genetic etiology of epilepsy. The phenotypic spectrum of CLCN4-related epilepsy includes drug-resistant seizures, cognitive and language impairment, behavioral disorders, and congenital anomalies. Notably, the mutation type and the number of seizure types correlate with the severity of the phenotype, suggesting its use for clinical prognosis. Lamotrigine can be considered a therapeutic option.


Asunto(s)
Canales de Cloruro/genética , Epilepsia/genética , Epilepsia/psicología , Adolescente , Adulto , Anciano , Anticonvulsivantes/uso terapéutico , Niño , Trastornos de la Conducta Infantil/etiología , Preescolar , Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/genética , Electroencefalografía , Epilepsias Mioclónicas/epidemiología , Epilepsias Mioclónicas/genética , Epilepsia/epidemiología , Femenino , Mutación del Sistema de Lectura , Eliminación de Gen , Variación Genética , Genotipo , Humanos , Lamotrigina/uso terapéutico , Trastornos del Lenguaje/etiología , Imagen por Resonancia Magnética , Masculino , Mutación Missense , Fenotipo , Convulsiones/fisiopatología
9.
Int J Mol Sci ; 22(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073593

RESUMEN

Ischemic stroke is a leading cause of mortality and chronic disability. Either recovery or progression towards irreversible failure of neurons and astrocytes occurs within minutes to days, depending on remaining perfusion levels. Initial damage arises from energy depletion resulting in a failure to maintain homeostasis and ion gradients between extra- and intracellular spaces. Astrocytes play a key role in these processes and are thus central players in the dynamics towards recovery or progression of stroke-induced brain damage. Here, we present a synopsis of the pivotal functions of astrocytes at the tripartite synapse, which form the basis of physiological brain functioning. We summarize the evidence of astrocytic failure and its consequences under ischemic conditions. Special emphasis is put on the homeostasis and stroke-induced dysregulation of the major monovalent ions, namely Na+, K+, H+, and Cl-, and their involvement in maintenance of cellular volume and generation of cerebral edema.


Asunto(s)
Astrocitos/metabolismo , Edema Encefálico/metabolismo , Lesiones Encefálicas/metabolismo , Homeostasis , Accidente Cerebrovascular/metabolismo , Astrocitos/patología , Edema Encefálico/patología , Lesiones Encefálicas/patología , Humanos , Transporte Iónico , Accidente Cerebrovascular/patología
10.
Hum Mutat ; 41(11): 1892-1905, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32741053

RESUMEN

The episodic ataxias (EA) are a group of inherited neurological diseases characterized by paroxysmal cerebellar incoordination. There exist nine forms of episodic ataxia with distinct neurological symptoms and genetic origins. Episodic ataxia type 6 (EA6) differs from other EA forms in long attack duration, epilepsy and absent myokymia, nystagmus, and tinnitus. It has been described in seven families, and mutations in SLC1A3, the gene encoding the glial glutamate transporter EAAT1, were reported in each family. How these mutations affect EAAT1 expression, subcellular localization, and function, and how such alterations result in the complex neurological phenotype of EA6 is insufficiently understood. We here compare the functional consequences of all currently known mutations by heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch clamp recordings of EAAT1 transport and anion currents. We observed impairments of multiple EAAT1 properties ranging from changes in transport function, impaired trafficking to increased protein expression. Many mutations caused only slight changes illustrating how sensitively the cerebellum reacts on impaired EAAT1 functions.


Asunto(s)
Ataxia/genética , Transportador 1 de Aminoácidos Excitadores/genética , Secuencia de Aminoácidos , Células HEK293 , Humanos , Mutación , Fenotipo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
11.
J Am Chem Soc ; 142(16): 7254-7258, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32233472

RESUMEN

CLC channels and transporters conduct or transport various kinds of anions, with the exception of fluoride, which acts as an effective inhibitor. Here, we performed sub-nanosecond DFT-based QM/MM simulations of the E. coli anion/proton exchanger ClC-ec1 and observed that fluoride binds incoming protons within the selectivity filter, with excess protons shared with the gating glutamate E148. Depending on E148 conformation, the competition for the proton can involve either a direct F-/E148 interaction or the modulation of water molecules bridging the two anions. The direct interaction locks E148 in a conformation that does not allow for proton transport, and thus inhibits protein function.


Asunto(s)
Antiportadores/metabolismo , Cloruros/metabolismo , Fluoruros/metabolismo , Humanos , Modelos Moleculares
12.
Pflugers Arch ; 476(1): 1-2, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38015255

Asunto(s)
Mentores , Músculos , Humanos
13.
J Biol Chem ; 292(46): 19055-19065, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28972156

RESUMEN

ClC-4 is an intracellular Cl-/H+ exchanger that is highly expressed in the brain and whose dysfunction has been linked to intellectual disability and epilepsy. Here we studied the subcellular localization of human ClC-4 in heterologous expression systems. ClC-4 is retained in the endoplasmic reticulum (ER) upon overexpression in HEK293T cells. Co-expression with distinct ClC-3 splice variants targets ClC-4 to late endosome/lysosomes (ClC-3a and ClC-3b) or recycling endosome (ClC-3c). When expressed in cultured astrocytes, ClC-4 sorted to endocytic compartments in WT cells but was retained in the ER in Clcn3-/- cells. To understand the virtual absence of ER-localized ClC-4 in WT astrocytes, we performed association studies by high-resolution clear native gel electrophoresis. Although other CLC channels and transporters form stable dimers, ClC-4 was mostly observed as monomer, with ClC-3-ClC-4 heterodimers being more stable than ClC-4 homodimers. We conclude that unique oligomerization properties of ClC-4 permit regulated targeting of ClC-4 to various endosomal compartment systems via expression of different ClC-3 splice variants.


Asunto(s)
Canales de Cloruro/metabolismo , Endosomas/metabolismo , Canales de Cloruro/análisis , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Lisosomas/metabolismo , Mapas de Interacción de Proteínas , Multimerización de Proteína , Señales de Clasificación de Proteína , Transporte de Proteínas
14.
Biophys J ; 112(7): 1396-1405, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28402882

RESUMEN

Electrical cell signaling requires adjustment of ion channel, receptor, or transporter function in response to changes in membrane potential. For the majority of such membrane proteins, the molecular details of voltage sensing remain insufficiently understood. Here, we present a molecular dynamics simulation-based method to determine the underlying charge movement across the membrane-the gating charge-by measuring electrical capacitor properties of membrane-embedded proteins. We illustrate the approach by calculating the charge transfer upon membrane insertion of the HIV gp41 fusion peptide, and validate the method on two prototypical voltage-dependent proteins, the Kv1.2 K+ channel and the voltage sensor of the Ciona intestinalis voltage-sensitive phosphatase, against experimental data. We then use the gating charge analysis to study how the T1 domain modifies voltage sensing in Kv1.2 channels and to investigate the voltage dependence of the initial binding of two Na+ ions in Na+-coupled glutamate transporters. Our simulation approach quantifies various mechanisms of voltage sensing, enables direct comparison with experiments, and supports mechanistic interpretation of voltage sensitivity by fractional amino acid contributions.


Asunto(s)
Biología Computacional/métodos , Simulación por Computador , Activación del Canal Iónico , Algoritmos , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Ciona intestinalis/metabolismo , Electrofisiología , Proteína gp41 de Envoltorio del VIH/metabolismo , Canal de Potasio Kv.1.2/química , Canal de Potasio Kv.1.2/metabolismo , Dominios Proteicos , Sodio/metabolismo
15.
Glia ; 65(2): 388-400, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27859594

RESUMEN

Astrocytic volume regulation and neurotransmitter uptake are critically dependent on the intracellular anion concentration, but little is known about the mechanisms controlling internal anion homeostasis in these cells. Here we used fluorescence lifetime imaging microscopy (FLIM) with the chloride-sensitive dye MQAE to measure intracellular chloride concentrations in murine Bergmann glial cells in acute cerebellar slices. We found Bergmann glial [Cl- ]int to be controlled by two opposing transport processes: chloride is actively accumulated by the Na+ -K+ -2Cl- cotransporter NKCC1, and chloride efflux through anion channels associated with excitatory amino acid transporters (EAATs) reduces [Cl- ]int to values that vary upon changes in expression levels or activity of these channels. EAATs transiently form anion-selective channels during glutamate transport, and thus represent a class of ligand-gated anion channels. Age-dependent upregulation of EAATs results in a developmental chloride switch from high internal chloride concentrations (51.6 ± 2.2 mM, mean ± 95% confidence interval) during early development to adult levels (35.3 ± 0.3 mM). Simultaneous blockade of EAAT1/GLAST and EAAT2/GLT-1 increased [Cl- ]int in adult glia to neonatal values. Moreover, EAAT activation by synaptic stimulations rapidly decreased [Cl- ]int . Other tested chloride channels or chloride transporters do not contribute to [Cl- ]int under our experimental conditions. Neither genetic removal of ClC-2 nor pharmacological block of K+ -Cl- cotransporter change resting Bergmann glial [Cl- ]int in acute cerebellar slices. We conclude that EAAT anion channels play an important and unexpected role in adjusting glial intracellular anion concentration during maturation and in response to cerebellar activity. GLIA 2017;65:388-400.


Asunto(s)
Cloruros/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo , Líquido Intracelular/metabolismo , Neuroglía/citología , Acetatos/farmacología , Factores de Edad , Animales , Animales Recién Nacidos , Ácido Aspártico/farmacología , Benzopiranos/farmacología , Bumetanida/farmacología , Cerebelo/citología , Transportador 1 de Aminoácidos Excitadores/antagonistas & inhibidores , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Indenos/farmacología , Líquido Intracelular/efectos de los fármacos , Ratones , Ratones Transgénicos , Red Nerviosa/fisiología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo
16.
J Biol Chem ; 290(30): 18732-43, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26063802

RESUMEN

CLC-K chloride channels are expressed in the kidney and in the inner ear and require the accessory subunit barttin for proper function and membrane insertion. Barttin exerts multiple functions on CLC-proteins: it modifies protein stability and intracellular trafficking as well as channel activity, ion conduction, and gating. So far, the molecular determinants of these distinct barttin functions have remained elusive. Here we performed serial perturbation mutagenesis to identify the sequence determinants of barttin function. Barttin consists of two transmembrane helices followed by a long intracellular carboxyl terminus, and earlier work demonstrated that the transmembrane core of barttin suffices for most effects on the α-subunit. We individually substituted every amino acid of the predicted transmembrane core (amino acids 9-26 and 35-55) with tryptophan, co-expressed mutant barttin with hClC-Ka or V166E rClC-K1, and characterized CLC-K/barttin channels by patch clamp techniques, biochemistry, and confocal microscopy. The majority of mutations left the chaperone function of barttin, i.e. the effects on endoplasmic reticulum exit and surface membrane insertion, unaffected. In contrast, tryptophan insertion at multiple positions resulted in impaired activity of hClC-Ka/barttin and changes in gating of V166E rClC-K1/barttin. These results demonstrate that mutations in a cluster of hydrophobic residues within transmembrane domain 1 affect barttin-CLC-K interaction and impair gating modification by the accessory subunit. Whereas tight interaction is necessary for functional modification, even impaired association of barttin and CLC-K suffices for normal intracellular trafficking. Our findings allow definition of a likely interaction surface and clarify the mechanisms underlying CLC-K channel modification by barttin.


Asunto(s)
Canales de Cloruro/metabolismo , Riñón/fisiología , Triptófano/metabolismo , Animales , Canales de Cloruro/química , Canales de Cloruro/genética , Citoplasma/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Riñón/metabolismo , Microscopía Confocal , Mutagénesis Sitio-Dirigida , Mutación , Técnicas de Placa-Clamp , Triptófano/química , Triptófano/genética
17.
J Biol Chem ; 290(43): 25851-62, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26342074

RESUMEN

ClC-3 is a member of the CLC family of anion channels and transporters, for which multiple functional properties and subcellular localizations have been reported. Since alternative splicing often results in proteins with diverse properties, we investigated to what extent alternative splicing might influence subcellular targeting and function of ClC-3. We identified three alternatively spliced ClC-3 isoforms, ClC-3a, ClC-3b, and ClC-3c, in mouse brain, with ClC-3c being the predominant splice variant. Whereas ClC-3a and ClC-3b are present in late endosomes/lysosomes, ClC-3c is targeted to recycling endosomes via a novel N-terminal isoleucine-proline (IP) motif. Surface membrane insertion of a fraction of ClC-3c transporters permitted electrophysiological characterization of this splice variant through whole-cell patch clamping on transfected mammalian cells. In contrast, neutralization of the N-terminal dileucine-like motifs was required for functional analysis of ClC-3a and ClC-3b. Heterologous expression of ClC-3a or ClC-3b carrying mutations in N-terminal dileucine motifs as well as WTClC-3c in HEK293T cells resulted in outwardly rectifying Cl(-) currents with significant capacitive current components. We conclude that alternative splicing of Clcn3 results in proteins with different subcellular localizations, but leaves the transport function of the proteins unaffected.


Asunto(s)
Empalme Alternativo , Canales de Cloruro/metabolismo , Neuronas/metabolismo , Fracciones Subcelulares/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Canales de Cloruro/química , Canales de Cloruro/genética , Ratones , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
18.
J Biol Chem ; 290(51): 30406-16, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26453302

RESUMEN

ClC-K chloride channels are crucial for auditory transduction and urine concentration. Mutations in CLCNKB, the gene encoding the renal chloride channel hClC-Kb, cause Bartter syndrome type III, a human genetic condition characterized by polyuria, hypokalemia, and alkalosis. In recent years, several Bartter syndrome-associated mutations have been described that result in truncations of the intracellular carboxyl terminus of hClC-Kb. We here used a combination of whole-cell patch clamp, confocal imaging, co-immunoprecipitation, and surface biotinylation to study the functional consequences of a frequent CLCNKB mutation that creates a premature stop codon at Trp-610. We found that W610X leaves the association of hClC-Kb and the accessory subunit barttin unaffected, but impairs its regulation by barttin. W610X attenuates hClC-Kb surface membrane insertion. Moreover, W610X results in hClC-Kb channel opening in the absence of barttin and prevents further barttin-mediated activation. To describe how the carboxyl terminus modifies the regulation by barttin we used V166E rClC-K1. V166E rClC-K1 is active without barttin and exhibits prominent, barttin-regulated voltage-dependent gating. Electrophysiological characterization of truncated V166E rClC-K1 demonstrated that the distal carboxyl terminus is necessary for slow cooperative gating. Since barttin modifies this particular gating process, channels lacking the distal carboxyl-terminal domain are no longer regulated by the accessory subunit. Our results demonstrate that the carboxyl terminus of hClC-Kb is not part of the binding site for barttin, but functionally modifies the interplay with barttin. The loss-of-activation of truncated hClC-Kb channels in heterologous expression systems fully explains the reduced basolateral chloride conductance in affected kidneys and the clinical symptoms of Bartter syndrome patients.


Asunto(s)
Canales de Cloruro/metabolismo , Activación del Canal Iónico , Animales , Sitios de Unión , Canales de Cloruro/genética , Codón sin Sentido/genética , Perros , Células HEK293 , Humanos , Hipopotasemia/genética , Hipopotasemia/metabolismo , Riñón/metabolismo , Riñón/patología , Células de Riñón Canino Madin Darby , Poliuria/genética , Poliuria/metabolismo , Poliuria/patología , Transporte de Proteínas/genética
19.
J Biol Chem ; 290(48): 28988-96, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26475859

RESUMEN

Crystal structures of the archaeal homologue GltPh have provided important insights into the molecular mechanism of transport of the excitatory neurotransmitter glutamate. Whereas mammalian glutamate transporters can translocate both glutamate and aspartate, GltPh is only one capable of aspartate transport. Most of the amino acid residues that surround the aspartate substrate in the binding pocket of GltPh are highly conserved. However, in the brain transporters, Thr-352 and Met-362 of the reentrant hairpin loop 2 are replaced by the smaller Ala and Thr, respectively. Therefore, we have studied the effects of T352A and M362T on binding and transport of aspartate and glutamate by GltPh. Substrate-dependent intrinsic fluorescence changes were monitored in transporter constructs containing the L130W mutation. GltPh-L130W/T352A exhibited an ~15-fold higher apparent affinity for l-glutamate than the wild type transporter, and the M362T mutation resulted in an increased affinity of ~40-fold. An even larger increase of the apparent affinity for l-glutamate, around 130-fold higher than that of wild type, was observed with the T352A/M362T double mutant. Radioactive uptake experiments show that GltPh-T352A not only transports aspartate but also l-glutamate. Remarkably, GltPh-M362T exhibited l-aspartate but not l-glutamate transport. The double mutant retained the ability to transport l-glutamate, but its kinetic parameters were very similar to those of GltPh-T352A alone. The differential impact of mutation on binding and transport of glutamate suggests that hairpin loop 2 not only plays a role in the selection of the substrate but also in its translocation.


Asunto(s)
Ácido Aspártico/química , Proteínas de Transporte de Glutamato en la Membrana Plasmática/química , Ácido Glutámico/química , Mutación Missense , Proteínas del Tejido Nervioso/química , Sustitución de Aminoácidos , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/genética , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Transporte Iónico/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Estructura Secundaria de Proteína , Especificidad por Sustrato/genética
20.
J Biol Chem ; 290(28): 17390-400, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26013830

RESUMEN

CLC-K/barttin chloride channels are essential for NaCl re-absorption in Henle's loop and for potassium secretion by the stria vascularis in the inner ear. Here, we studied the posttranslational modification of such channels by palmitoylation of their accessory subunit barttin. We found that barttin is palmitoylated in vivo and in vitro and identified two conserved cysteine residues at positions 54 and 56 as palmitoylation sites. Point mutations at these two residues reduce the macroscopic current amplitudes in cells expressing CLC-K/barttin channels proportionally to the relative reduction in palmitoylated barttin. CLC-K/barttin expression, plasma membrane insertion, and single channel properties remain unaffected, indicating that these mutations decrease the number of active channels. R8W and G47R, two naturally occurring barttin mutations identified in patients with Bartter syndrome type IV, reduce barttin palmitoylation and CLC-K/barttin channel activity. Palmitoylation of the accessory subunit barttin might thus play a role in chloride channel dysfunction in certain variants of Bartter syndrome. We did not observe pronounced alteration of barttin palmitoylation upon increased salt and water intake or water deprivation, indicating that this posttranslational modification does not contribute to long term adaptation to variable water intake. Our results identify barttin palmitoylation as a novel posttranslational modification of CLC-K/barttin chloride channels.


Asunto(s)
Canales de Cloruro/química , Canales de Cloruro/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Canales de Cloruro/genética , Cisteína/química , Perros , Células HEK293 , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/metabolismo , Humanos , Lipoilación , Células de Riñón Canino Madin Darby , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Puntual , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA