Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nature ; 477(7362): 115-9, 2011 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-21822291

RESUMEN

DNA double strand breaks (DSBs) in repetitive sequences are a potent source of genomic instability, owing to the possibility of non-allelic homologous recombination (NAHR). Repetitive sequences are especially at risk during meiosis, when numerous programmed DSBs are introduced into the genome to initiate meiotic recombination. In the repetitive ribosomal DNA (rDNA) array of the budding yeast Saccharomyces cerevisiae, meiotic DSB formation is prevented in part through Sir2-dependent heterochromatin formation. Here we show that the edges of the rDNA array are exceptionally susceptible to meiotic DSBs, revealing an inherent heterogeneity in the rDNA array. We find that this localized DSB susceptibility necessitates a border-specific protection system consisting of the meiotic ATPase Pch2 and the origin recognition complex subunit Orc1. Upon disruption of these factors, DSB formation and recombination increased specifically in the outermost rDNA repeats, leading to NAHR and rDNA instability. Notably, the Sir2-dependent heterochromatin of the rDNA itself was responsible for the induction of DSBs at the rDNA borders in pch2Δ cells. Thus, although the activity of Sir2 globally prevents meiotic DSBs in the rDNA, it creates a highly permissive environment for DSB formation at the junctions between heterochromatin and euchromatin. Heterochromatinized repetitive DNA arrays are abundant in most eukaryotic genomes. Our data define the borders of such chromatin domains as distinct high-risk regions for meiotic NAHR, the protection of which may be a universal requirement to prevent meiotic genome rearrangements that are associated with genomic diseases and birth defects.


Asunto(s)
Meiosis/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Inestabilidad Cromosómica/genética , Roturas del ADN de Doble Cadena , ADN Ribosómico/genética , Proteínas Nucleares/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 108(31): 12584-90, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21709215

RESUMEN

For a daughter cell to receive a complete genomic complement, it is essential that the mitotic spindle be positioned accurately within the cell. In budding yeast, a signaling system known as the spindle position checkpoint (SPOC) monitors spindle position and regulates the activity of the mitotic exit network (MEN), a GTPase signaling pathway that promotes exit from mitosis. The protein kinase Kin4 is a central component of the spindle position checkpoint. Kin4 primarily localizes to the mother cell and associates with spindle pole bodies (SPBs) located in the mother cell to inhibit MEN signaling. In contrast, the kinase does not associate with the SPB in the bud. Thus, only when a MEN bearing SPB leaves the mother cell and the spindle is accurately positioned along the mother-bud axis can MEN signaling occur and cell division proceed. Here, we describe a mechanism ensuring that Kin4 only associates with mother cell-located SPBs. The bud-localized MEN regulator Lte1, whose molecular function has long been unclear, prevents Kin4 that escapes into the bud from associating with SPBs in the daughter cell.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Western Blotting , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Inmunoprecipitación , Microscopía Fluorescente , Mitosis , Mutación , Fosforilación , Unión Proteica , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Mol Biol Cell ; 27(25): 3991-4001, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27798238

RESUMEN

In budding yeast, alignment of the anaphase spindle along the mother-bud axis is crucial for maintaining genome integrity. If the anaphase spindle becomes misaligned in the mother cell compartment, cells arrest in anaphase because the mitotic exit network (MEN), an essential Ras-like GTPase signaling cascade, is inhibited by the spindle position checkpoint (SPoC). Distinct localization patterns of MEN and SPoC components mediate MEN inhibition. Most components of the MEN localize to spindle pole bodies. If the spindle becomes mispositioned in the mother cell compartment, cells arrest in anaphase due to inhibition of the MEN by the mother cell-restricted SPoC kinase Kin4. Here we show that a bud-localized activating signal is necessary for full MEN activation. We identify Lte1 as this signal and show that Lte1 activates the MEN in at least two ways. It inhibits small amounts of Kin4 that are present in the bud via its central domain. An additional MEN-activating function of Lte1 is mediated by its N- and C-terminal GEF domains, which, we propose, directly activate the MEN GTPase Tem1. We conclude that control of the MEN by spindle position is exerted by both negative and positive regulatory elements that control the pathway's GTPase activity.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Anafase , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/fisiología , Mitosis/genética , Mitosis/fisiología , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Transducción de Señal , Huso Acromático , Cuerpos Polares del Huso/metabolismo
4.
Dev Cell ; 19(4): 599-611, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20951350

RESUMEN

The faithful alignment of homologous chromosomes during meiotic prophase requires the coordination of DNA double-strand break (DSB) repair with large-scale chromosome reorganization. Here we identify the phosphatase PP4 (Pph3/Psy2) as a mediator of this process in Saccharomyces cerevisiae. In pp4 mutants, early stages of crossover repair and homology-independent pairing of centromeres are coordinately blocked. We traced the loss of centromere pairing to the persistent phosphorylation of the chromosomal protein Zip1 on serine 75. Zip1-S75 is a consensus site for the ATR-like checkpoint kinase Mec1, and centromere pairing is restored in mec1 mutants. Importantly, Zip1-S75 phosphorylation does not alter chromosome synapsis or DSB repair, indicating that Mec1 separates centromere pairing from the other functions of Zip1. The centromeric localization and persistent activity of PP4 during meiotic prophase suggest a model whereby Zip1-S75 phosphorylation dynamically destabilizes homology-independent centromere pairing in response to recombination initiation, thereby coupling meiotic chromosome dynamics to DSB repair.


Asunto(s)
Centrómero/metabolismo , Emparejamiento Cromosómico , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Intercambio Genético , Roturas del ADN de Doble Cadena , Reparación del ADN , Mutación/genética , Proteínas Nucleares/metabolismo , Fosforilación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Transducción de Señal , Especificidad por Sustrato , Complejo Sinaptonémico/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA