Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(42): e202210658, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-35913045

RESUMEN

Part of tetrahedral framework aluminum in a protonic mordenite (HMOR) will convert geometry to distorted tetrahedral and octahedral coordination. High-field 27 Al NMR data show that more framework Al atoms at T3 and T4 sites change geometry to nonframework structures than others. These nonframework Al species preferentially reside in the side pockets, which will decrease the accessibility of acid sites in the 8-membered ring (MR) channel, impairing the dimethyl ether (DME) carbonylation reaction. The arisen octahedrally coordinated Al species are framework-associated, which can be reverted into the zeolite framework. Herein, we find that a facile treatment with pyridine could force the octahedral coordination Al back into a tetrahedral environment, which could increase the number of available active sites and enhance the diffusion of DME, thus improving the reactivity (4 times) of the DME carbonylation reaction and prolonging the lifetime of catalysts.

2.
Angew Chem Int Ed Engl ; 61(18): e202116990, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35192218

RESUMEN

Controlling the location of aluminum atoms in a zeolite framework is critical for understanding structure-performance relationships of catalytic reaction systems and tailoring catalyst design. Herein, we report a strategy to preferentially relocate mordenite (MOR) framework Al atoms into the desired T3 sites by low-pressure SiCl4 treatment (LPST). High-field 27 Al NMR was used to identify the exact location of framework Al for the MOR samples. The results indicate that 73 % of the framework Al atoms were at the T3 sites after LPST under optimal conditions, which leads to controllably generating and intensifying active sites in MOR zeolite for the dimethyl ether (DME) carbonylation reaction with higher methyl acetate (MA) selectivity and much longer lifetime (25 times). Further research reveals that the Al relocation mechanism involves simultaneous extraction, migration, and reinsertion of Al atoms from and into the parent MOR framework. This unique method is potentially applicable to other zeolites to control Al location.

3.
Nat Commun ; 15(1): 6967, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138177

RESUMEN

Revealing key factors that modulate the regioselectivity in heterogeneous hydroformylation requires identifying and monitoring the dynamic evolution of the truly active center under real reaction conditions. However, unambiguous in situ characterizations are still lacking. Herein, we elaborately construct a series of Rh-POPs catalysts for propylene hydroformylation which exhibited tunable regioselectivity. Multi-technique approaches reveal the unique microenvironment of the diverse HRh(CO)(PPh3-frame)2 sites with distinct P-Rh-P bite angles ranging from 90° to 120° and 158° to 168°, respectively. In situ time-resolved XAFS, FT-IR, and quasi-in situ Solid-state NMR experiments combined with DFT calculations explain the dynamic evolution of the electronic and coordinate state of the distinct active sites induced by hemilabile PPh3-frame ligands and further disclose the regulatory mechanism of regioselectivity. These state-of-the-art techniques and multiscale analysis advance the understanding of how hemilabile coordination influences regioselectivity and will provide a new thought to modulate the regioselectivity in future industrial processes.

4.
J Phys Chem Lett ; : 5186-5194, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666100

RESUMEN

It is of great significance to accurately quantify the Brønsted acid sites (BASs) at different positions of mordenite (MOR) zeolite. However, H-MOR obtained from Na-MOR can hardly avoid dealumination under hydrothermal conditions, which causes difficulty in the acid characterization. Herein, 23Na-27Al D-HMQC was performed combined with high-field 23Na MQ MAS NMR and DFT calculation, which provided an unambiguous attribution of the 23Na chemical shifts and further helped to improve the resolution of 27Al MAS NMR. By fitting the 23Na and 1H MAS NMR spectra of Na/H-MOR, the intrinsic BAS contents in different T-sites were measured by characterizing the location and content of sodium ions. These Na/H-MOR zeolites with various acid distributions were used for DME carbonylation and showed that the amount of BASs in the T3 site was proportional to the activity of carbonylation. This study provides a new method for investigating the intrinsic acid properties of zeolites.

5.
Chem Commun (Camb) ; 56(58): 8063-8066, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32542269

RESUMEN

The evolution of retained species during the whole methanol-to-olefins process was revealed with the aid of GC-MS, thermogravimetric analysis (TG) and density functional theory (DFT) calculations. Precise routes for the transformation of retained methylbenzenes to methylnaphthalenes were proposed, based on the direct capture of three possible organic intermediates, to explain the catalyst deactivation procedure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA