RESUMEN
BACKGROUND: Breast cancer stem cell (CSC) expansion results in tumor progression and chemoresistance; however, the modulation of CSC pluripotency remains unexplored. Transmembrane protein 120B (TMEM120B) is a newly discovered protein expressed in human tissues, especially in malignant tissues; however, its role in CSC expansion has not been studied. This study aimed to determine the role of TMEM120B in transcriptional coactivator with PDZ-binding motif (TAZ)-mediated CSC expansion and chemotherapy resistance. METHODS: Both bioinformatics analysis and immunohistochemistry assays were performed to examine expression patterns of TMEM120B in lung, breast, gastric, colon, and ovarian cancers. Clinicopathological factors and overall survival were also evaluated. Next, colony formation assay, MTT assay, EdU assay, transwell assay, wound healing assay, flow cytometric analysis, sphere formation assay, western blotting analysis, mouse xenograft model analysis, RNA-sequencing assay, immunofluorescence assay, and reverse transcriptase-polymerase chain reaction were performed to investigate the effect of TMEM120B interaction on proliferation, invasion, stemness, chemotherapy sensitivity, and integrin/FAK/TAZ/mTOR activation. Further, liquid chromatography-tandem mass spectrometry analysis, GST pull-down assay, and immunoprecipitation assays were performed to evaluate the interactions between TMEM120B, myosin heavy chain 9 (MYH9), and CUL9. RESULTS: TMEM120B expression was elevated in lung, breast, gastric, colon, and ovarian cancers. TMEM120B expression positively correlated with advanced TNM stage, lymph node metastasis, and poor prognosis. Overexpression of TMEM120B promoted breast cancer cell proliferation, invasion, and stemness by activating TAZ-mTOR signaling. TMEM120B directly bound to the coil-coil domain of MYH9, which accelerated the assembly of focal adhesions (FAs) and facilitated the translocation of TAZ. Furthermore, TMEM120B stabilized MYH9 by preventing its degradation by CUL9 in a ubiquitin-dependent manner. Overexpression of TMEM120B enhanced resistance to docetaxel and doxorubicin. Conversely, overexpression of TMEM120B-∆CCD delayed the formation of FAs, suppressed TAZ-mTOR signaling, and abrogated chemotherapy resistance. TMEM120B expression was elevated in breast cancer patients with poor treatment outcomes (Miller/Payne grades 1-2) than in those with better outcomes (Miller/Payne grades 3-5). CONCLUSIONS: Our study reveals that TMEM120B bound to and stabilized MYH9 by preventing its degradation. This interaction activated the ß1-integrin/FAK-TAZ-mTOR signaling axis, maintaining stemness and accelerating chemotherapy resistance.
Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Humanos , Animales , Ratones , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Integrina beta1 , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular , Cadenas Pesadas de MiosinaRESUMEN
INTRODUCTION: Functional gastrointestinal disorders (FGIDs) are common, and they severely impair an individual's quality of life. The mechanism of pathogenesis and the effective treatments for FGIDs remain elusive. Neuromodulation-a relatively new treatment-has exhibited a good therapeutic effect on FGIDs, although there are different methods for different symptoms of FGIDs. MATERIALS AND METHODS: We used PubMed to review the history of neuromodulation for the treatment of FGIDs and to review several recently proposed neuromodulation approaches with improved effects on FGIDs. CONCLUSION: Electroacupuncture, transcutaneous electroacupuncture, transcutaneous auricular vagal nerve stimulation, sacral nerve stimulation (SNS) (which relies on vagal nerve stimulation), and gastric electrical stimulation (which works through the modulation of slow waves generated by the interstitial cells of Cajal), in addition to the noninvasive neurostimulation alternative approach method of SNS-tibial nerve stimulation and transcutaneous electrical stimulation (which is still in its infancy), are some of the proposed neuromodulation approaches with improved effects on FGIDs. This review has discussed some critical issues related to the selection of stimulation parameters and the underlying mechanism and attempts to outline future research directions backed by the existing literature.
Asunto(s)
Enfermedades Gastrointestinales , Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Humanos , Calidad de Vida , Estimulación Eléctrica Transcutánea del Nervio/métodos , Enfermedades Gastrointestinales/terapia , Estimulación del Nervio Vago/métodos , Nervios EspinalesRESUMEN
Zinc finger protein 500 (ZNF500) has an unknown expression pattern and biological function in human tissues. Our study revealed that the ZNF500 mRNA and protein levels were higher in breast cancer tissues than those in their normal counterparts. However, ZNF500 expression was negatively correlated with advanced TNM stage (p = 0.018), positive lymph node metastasis (p = 0.014), and a poor prognosis (p < 0.001). ZNF500 overexpression abolished in vivo and in vitro breast cancer cell proliferation by activating the p53-p21-E2F4 signaling axis and directly interacting with p53 via its C2H2 domain. This may prevent ubiquitination of p53 in a manner that is competitive to MDM2, thus stabilizing p53. When ZNF500-∆C2H2 was overexpressed, the suppressed proliferation of breast cancer cells was neutralized in vitro and in vivo. In human breast cancer tissues, ZNF500 expression was positively correlated with p53 (p = 0.022) and E2F4 (p = 0.004) expression. ZNF500 expression was significantly lower in patients with Miller/Payne Grade 1-2 than in those with Miller/Payne Grade 3-5 (p = 0.012). ZNF500 suppresses breast cancer cell proliferation and sensitizes cells to chemotherapy.
Asunto(s)
Neoplasias de la Mama , Proteínas Proto-Oncogénicas c-mdm2 , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
BACKGROUND: Computed tomography (CT) small bowel three-dimensional (3D) reconstruction is a powerful tool for the diagnosis of small bowel disease and can clearly show the intestinal lumen and wall as well as the outside structure of the wall. The horizontal axis position can show the best adjacent intestinal tube and the lesion between the intestinal tubes, while the coronal position can show the overall view of the small bowel. The ileal end of the localization of the display of excellent, and easy to quantitative measurement of the affected intestinal segments, the sagittal position for the rectum and the pre-sacral lesions show the best, for the discovery of fistulae is also helpful. Sagittal view can show rectal and presacral lesions and is useful for fistula detection. It is suitable for the assessment of inflammatory bowel disease, such as assessment of disease severity and diagnosis and differential diagnosis of the small bowel and mesenteric space-occupying lesions as well as the judgment of small bowel obstruction points. CASE SUMMARY: Bleeding caused by small intestinal polyps is often difficult to diagnose in clinical practice. This study reports a 29-year-old male patient who was admitted to the hospital with black stool and abdominal pain for 3 months. Using the combination of CT-3D reconstruction and capsule endoscopy, the condition was diagnosed correctly, and the polyps were removed using single-balloon enteroscopy-endoscopic retrograde cholangiopancreatography without postoperative complications. CONCLUSION: The role of CT-3D in gastrointestinal diseases was confirmed. CT-3D can assist in the diagnosis and treatment of gastrointestinal diseases in combination with capsule endoscopy and small intestinal microscopy.
RESUMEN
Constipation symptoms of Parkinson's disease (PD) seriously reduce the quality of life of patients and aggravate the development of the disease, but current treatment options still cannot alleviate the progress of constipation. Electroacupuncture (EA) is a new method for the treatment of constipation, which can effectively treat the symptoms of constipation in PD patients. However, the specific regulatory mechanisms of EA in the treatment of constipation symptoms in PD remain unclear. The aim of this study is to investigate the therapeutic effect of EA on PD constipation rats and its regulatory mechanism. A rotenone (ROT)-induced gastrointestinal motility disorder model was used to simulate the pathological process of constipation in PD. The results showed that EA could effectively promote gastrointestinal peristalsis, reduce α-synuclein accumulation in substantia nigra and colon and colonic injury in rats after ROT administration. Mechanistically, EA activation of the central-cholinergic pathway increases acetylcholine release in the colon. At the same time, EA up-regulated the co-expression of enteric glial cells (EGCs) and α7 nicotinic acetylcholine receptor (α7nAChR). EA increased the expression of choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and tyrosine hydroxylase (TH) in the colon of PD rats. Further mechanistic studies showed that EA increased the expression of glial cell-derived neurotrophic factor (GDNF), GFRa1 and p-AKT in colon tissues. The present study confirmed that EA upregulates α7nAChR through a central-cholinergic mechanism to promote GDNF release from EGCs, thereby protecting intestinal neurons and thereby improving gastrointestinal motility.
Asunto(s)
Electroacupuntura , Motilidad Gastrointestinal , Factor Neurotrófico Derivado de la Línea Celular Glial , Neuroglía , Ratas Sprague-Dawley , Animales , Electroacupuntura/métodos , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Motilidad Gastrointestinal/fisiología , Ratas , Masculino , Neuroglía/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Estreñimiento/terapia , Estreñimiento/metabolismo , Rotenona , Acetilcolina/metabolismo , Colon/metabolismoRESUMEN
Antineutrophil cytoplasmic antibody vasculitis-associated interstitial lung disease (AAV-ILD) is a potentially life-threatening disease. However, very little research has been done on the condition's mortality risk. Hence, our objective is to find out the factors influencing the prognosis of AAV-ILD and employ these findings to create a nomogram model. Patients with AAV-ILD who received treatment at the First Affiliated Hospital of Zhengzhou University during the period from March 1, 2011, to April 1, 2022 were selected for this research. The development of nomogram entailed a synergistic integration of univariate, Lasso, and multivariate Cox regression analyses. Internal validation ensued through bootstrap techniques involving 1000 re-sampling iterations. Discrimination and calibration were assessed utilizing Harrell's C-index, receiver operating characteristic (ROC) curve, and calibration curve. Model performance was evaluated through integrated discrimination improvement (IDI), net reclassification improvement (NRI), and likelihood ratio test. The net benefit of the model was evaluated using decision curve analysis (DCA). A cohort comprising 192 patients was enrolled for analysis. Throughout observation period, 32.29% of the population died. Key factors such as cardiac involvement, albumin, smoking history, and age displayed substantial prognostic relevance in AAV-ILD. These factors were incorporated to craft a predictive nomogram. Impressively, the model exhibited robust performance, boasting a Harrell's C index of 0.826 and an AUC of 0.940 (95% CI 0.904-0.976). The calibration curves depicted a high degree of harmony between predicted outcomes and actual observations. Significantly enhancing discriminative ability compared to the ILD-GAP model, the nomogram was validated through the IDI, NRI, and likelihood ratio test. DCA underscored the superior predictive value of the predictive model over the ILD-GAP model. The internal validation further affirmed this efficacy, with a mean Harrell's C-index of 0.815 for the predictive model. The nomogram model can be employed to predict the prognosis of patients with AAV-ILD. Moreover, the model performance is satisfactory. In the future, external datasets could be utilized for external validation.
Asunto(s)
Anilidas , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Enfermedades Pulmonares Intersticiales , Humanos , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/complicaciones , Nomogramas , Enfermedades Pulmonares Intersticiales/diagnóstico , China/epidemiologíaRESUMEN
Background: GLP-1 receptor agonists (GLP-1 RA) have been proven to treat several metabolic diseases; however, the effects of GLP-1 RA on polycystic ovary syndrome (PCOS) remain unclear. Here, we aimed to investigate whether semaglutide, a novel GLP-1 RA, could alleviate ovarian inflammation in PCOS mice. Methods: Female C57BL/6J mice were subcutaneously injected with dehydroepiandrosterone for 21 days to establish the PCOS model. Then the mice were randomly divided into three groups: PCOS group (n = 6), S-0.42 group (semaglutide 0.42 mg/kg/w, n = 6), and S-0.84 group (semaglutide 0.84 mg/kg/w, n = 6). The remaining six mice were used as controls (NC). After 28 days of intervention, serum sex hormones and inflammatory cytokine levels were measured. Hematoxylin and eosin staining was used to observe the ovarian morphology. Immunohistochemical staining was used to detect the relative expression of CYP19A1, TNF-α, IL-6, IL-1ß, and NF-κB in ovaries. CYP17A1 and StAR were detected using immunofluorescence staining. Finally, the relative expressions of AMPK, pAMPK, SIRT1, NF-κB, IκBα, pIκBα, TNF-α, IL-6, and IL-1ß were measured using Western blotting. Results: First, after intervention with semaglutide, the weight of the mice decreased, insulin resistance improved, and the estrous cycle returned to normal. Serum testosterone and IL-1ß levels decreased significantly, whereas estradiol and progestin levels increased significantly. Follicular cystic dilation significantly improved. The expression of TNF-α, IL-6, IL-1ß, NF-κB, CYP17A1, and StAR in the ovary was significantly downregulated, whereas CYP19A1 expression was upregulated after the intervention. Finally, we confirmed that semaglutide alleviates ovarian tissue inflammation and improves PCOS through the AMPK/SIRT1/NF-κB signaling pathway. Conclusion: Semaglutide alleviates ovarian inflammation via the AMPK/SIRT1/NFκB signaling pathway in PCOS mice.
Asunto(s)
Agonistas Receptor de Péptidos Similares al Glucagón , Péptidos Similares al Glucagón , Inflamación , Síndrome del Ovario Poliquístico , Transducción de Señal , Animales , Femenino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Modelos Animales de Enfermedad , Péptidos Similares al Glucagón/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Ovario/efectos de los fármacos , Ovario/patología , Ovario/metabolismo , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo , Agonistas Receptor de Péptidos Similares al Glucagón/farmacologíaRESUMEN
Many real-world engineering problems need to balance different objectives and can be formatted as multi-objective optimization problem. An effective multi-objective algorithm can achieve a set of optimal solutions that can make a tradeoff between different objectives, which is valuable to further explore and design. In this paper, an improved multi-objective differential evolution algorithm (MOEA/D/DEM) based on a decomposition strategy is proposed to improve the performance of differential evolution algorithm for practical multi-objective nutrition decision problems. Firstly, considering the neighborhood characteristic, a neighbor intimacy factor is designed in the search process for enhancing the diversity of the population, then a new Gaussian mutation strategy with variable step size is proposed to reduce the probability of escaping local optimum area and improve the local search ability. Finally, the proposed algorithm is tested by classic test problems (DTLZ1-7 and WFG1-9) and applied to the multi-objective nutrition decision problems, compared to the other reported multi-objective algorithms, the proposed algorithm has a better search capability and obtained competitive results.
RESUMEN
Background: The unknown etiology of sarcoidosis with variable clinical features leads to delayed diagnosis and limited therapeutic strategies. Hence, exploring the latent mechanisms and constructing an accessible and reliable diagnostic model of sarcoidosis is vital for innovative therapeutic approaches to improve prognosis. Methods: This retrospective study analyzed transcriptomes from 11 independent sarcoidosis cohorts, comprising 313 patients and 400 healthy controls. The weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis were performed to identify molecular biomarkers. Machine learning was employed to fit a diagnostic model. The potential pathogenesis and immune landscape were detected by bioinformatics tools. Results: A 10-gene signature SARDS consisting of GBP1, LEF1, IFIT3, LRRN3, IFI44, LHFPL2, RTP4, CD27, EPHX2, and CXCL10 was further constructed in the training cohorts by the LASSO algorithm, which performed well in the four independent cohorts with the splendid AUCs ranging from 0.938 to 1.000. The findings were validated in seven independent publicly available gene expression datasets retrieved from whole blood, PBMC, alveolar lavage fluid cells, and lung tissue samples from patients with outstanding AUCs ranging from 0.728 to 0.972. Transcriptional signatures associated with sarcoidosis revealed a potential role of immune response in the development of the disease through bioinformatics analysis. Conclusions: Our study identified and validated molecular biomarkers for the diagnosis of sarcoidosis and constructed the diagnostic model SARDS to improve the accuracy of early diagnosis of the disease.