Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Environ Res ; 255: 119209, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38782336

RESUMEN

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) process is a promising wastewater treatment technology, but the slow microbial growth rate greatly hinders its practical application. Although high-level nitrogen removal and excellent biomass accumulation have been achieved in n-DAMO granule process, the formation mechanism of n-DAMO granules remains unresolved. To elucidate the role of functional microbes in granulation, this study attempted to cultivate granules dominated by n-DAMO microorganisms and granules coupling n-DAMO with anaerobic ammonium oxidation (Anammox). After long-term operation, dense granules were developed in the two systems where both n-DAMO archaea and n-DAMO bacteria were enriched, whereas granulation did not occur in the other system dominated by n-DAMO bacteria. Extracellular polymeric substances (EPS) measurement indicated the critical role of EPS production in the granulation of n-DAMO process. Metagenomic and metatranscriptomic analyses revealed that n-DAMO archaea and Anammox bacteria were active in EPS biosynthesis, while n-DAMO bacteria were inactive. Consequently, more EPS were produced in the systems containing n-DAMO archaea and Anammox bacteria, leading to the successful development of n-DAMO granules. Furthermore, EPS biosynthesis in n-DAMO systems is potentially regulated by acyl-homoserine lactones and c-di-GMP. These findings not only provide new insights into the mechanism of granule formation in n-DAMO systems, but also hint at potential strategies for management of the granule-based n-DAMO process.


Asunto(s)
Archaea , Bacterias , Oxidación-Reducción , Archaea/metabolismo , Archaea/genética , Anaerobiosis , Bacterias/metabolismo , Bacterias/genética , Metano/metabolismo , Eliminación de Residuos Líquidos/métodos , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Nitritos/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Reactores Biológicos/microbiología , Aguas Residuales/microbiología
2.
Environ Res ; 252(Pt 1): 118810, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552829

RESUMEN

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) process offers a promising solution for simultaneously achieving methane emissions reduction and efficient nitrogen removal in wastewater treatment. Although nitrogen removal at a practical rate has been achieved by n-DAMO biofilm process, the mechanisms of biofilm formation and nitrogen transformation remain to be elucidated. In this study, n-DAMO biofilms were successfully developed in the membrane aerated moving bed biofilm reactor (MAMBBR) and removed nitrate at a rate of 159 mg NO3--N L-1 d-1. The obvious increase in the content of extracellular polymeric substances (EPS) indicated that EPS production was important for biofilm development. n-DAMO microorganisms dominated the microbial community, and n-DAMO bacteria were the most abundant microorganisms. However, the expression of biosynthesis genes for proteins and polysaccharides encoded by n-DAMO archaea was significantly more active compared to other microorganisms, suggesting the central role of n-DAMO archaea in EPS production and biofilm formation. In addition to nitrate reduction, n-DAMO archaea were revealed to actively express dissimilatory nitrate reduction to ammonium and nitrogen fixation. The produced ammonium was putatively converted to dinitrogen gas through the joint function of n-DAMO archaea and n-DAMO bacteria. This study revealed the biofilm formation mechanism and nitrogen-transformation network in n-DAMO biofilm systems, shedding new light on promoting the application of n-DAMO process.


Asunto(s)
Biopelículas , Reactores Biológicos , Metano , Nitratos , Oxidación-Reducción , Biopelículas/crecimiento & desarrollo , Metano/metabolismo , Anaerobiosis , Nitratos/metabolismo , Reactores Biológicos/microbiología , Nitrógeno/metabolismo , Archaea/metabolismo , Archaea/genética , Archaea/fisiología , Bacterias/metabolismo , Bacterias/genética , Eliminación de Residuos Líquidos/métodos
3.
Environ Sci Technol ; 57(44): 16862-16872, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37873608

RESUMEN

Nitrite-dependent anaerobic methane oxidizing (n-DAMO) bacteria generally convert nitrite to dinitrogen and bypass the nitrous oxide (N2O) formation step. However, N2O is often detected in n-DAMO bacteria dominated cultures and it remains an open question as to the microbial origin of N2O in these enrichments. Using a stable nitrite consuming microbial community enriched for n-DAMO bacteria, we demonstrated that N2O production was coupled to methane oxidation and the higher initial nitrite concentrations led to increased quantities of N2O being formed. Moreover, continuous exposure of the enrichment culture to about 5 mg of N L-1 nitrite resulted in constant N2O being produced (12.5% of nitrite was reduced to N2O). Metatranscriptomic analyses revealed that nitrite reductase (nirS) and nitric oxide reductase (norZ) transcripts from n-DAMO bacteria increased in response to nitrite exposure. No other bacteria significantly expressed nor genes under these conditions, suggesting n-DAMO bacteria are responsible for N2O being produced. In a 35-day bioreactor experiment, N2O produced by the n-DAMO bacteria accumulated when nitrite was in excess; this was found to be up to 3.2% of the nitrogen that resulted from nitrite removal. Together, these results suggested that excess nitrite is an important driver of N2O production by n-DAMO bacteria. To this end, proper monitoring and control of nitrite levels in wastewater treatment plants would be effective strategies for mitigating N2O emissions to the atmosphere.


Asunto(s)
Methylococcaceae , Nitritos , Anaerobiosis , Óxido Nitroso , Oxidación-Reducción , Metano , Reactores Biológicos/microbiología , Desnitrificación
4.
Environ Sci Technol ; 57(50): 20975-20991, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37931214

RESUMEN

Nitrate/nitrite-dependent anaerobic oxidation of methane (n-DAMO) is a recently discovered process, which provides a sustainable perspective for simultaneous nitrogen removal and greenhouse gas emission (GHG) mitigation by using methane as an electron donor for denitrification. However, the engineering roadmap of the n-DAMO process is still unclear. This work constitutes a state-of-the-art review on the classical and most recently discovered metabolic mechanisms of the n-DAMO process. The versatile combinations of the n-DAMO process with nitrification, nitritation, and partial nitritation for nitrogen removal are also clearly presented and discussed. Additionally, the recent advances in bioreactor development are systematically reviewed and evaluated comprehensively in terms of methane supply, biomass retention, membrane requirement, startup time, reactor performance, and limitations. The key issues including enrichment and operation strategy for the scaling up of n-DAMO-based processes are also critically addressed. Moreover, the challenges inherent to implementing the n-DAMO process in practical applications, including application scenario recognition, GHG emission mitigation, and operation under realistic conditions, are highlighted. Finally, prospects as well as opportunities for future research are proposed. Overall, this review provides a roadmap for potential applications and further development of the n-DAMO process in the field of wastewater treatment.


Asunto(s)
Compuestos de Amonio , Nitratos , Nitratos/metabolismo , Nitritos/metabolismo , Nitrificación , Anaerobiosis , Metano , Desnitrificación , Compuestos de Amonio/metabolismo , Oxidación-Reducción , Reactores Biológicos , Nitrógeno/metabolismo
5.
Environ Res ; 220: 115184, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586714

RESUMEN

As a promising technology, the combination of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) with Anammox offers a solution to achieve effective and sustainable wastewater treatment. However, this sustainable process faces challenges to accumulate sufficient biomass for reaching practical nitrogen removal performance. This study developed an innovative membrane aerated moving bed biofilm reactor (MAMBBR), which supported sufficient methane supply and excellent biofilm attachment, for cultivating biofilms coupling n-DAMO with Anammox. Biofilms were developed rapidly on the polyurethane foam with the supply of ammonium and nitrate, achieving the bioreactor performance of 275 g N m-3 d-1 within 102 days. After the preservation at -20 °C for 8 months, the biofilm was successfully reactivated and achieved 315 g N m-3 d-1 after 188 days. After reactivation, MAMBBR was applied to treat synthetic sidestream wastewater. Up to 99.9% of total nitrogen was removed with the bioreactor performance of 4.0 kg N m-3 d-1. Microbial community analysis and mass balance calculation demonstrated that n-DAMO microorganisms and Anammox bacteria collectively contributed to nitrogen removal in MAMBBR. The MAMBBR developed in this study provides an ideal system of integrating n-DAMO with Anammox for sustainable wastewater treatment.


Asunto(s)
Compuestos de Amonio , Nitratos , Desnitrificación , Metano , Nitrógeno , Oxidación Anaeróbica del Amoníaco , Anaerobiosis , Reactores Biológicos/microbiología , Oxidación-Reducción , Biopelículas
6.
Environ Sci Technol ; 55(24): 16586-16596, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34723492

RESUMEN

Mainstream anaerobic wastewater treatment has received increasing attention for the recovery of methane-rich biogas from biodegradable organics, but subsequent mainstream nitrogen and dissolved methane removal at low temperatures remains a critical challenge in practical applications. In this study, granular sludge coupling n-DAMO with Anammox was employed for mainstream nitrogen removal, and the dissolved methane removal potential of granular sludge at low temperatures was investigated. A stable nitrogen removal rate (0.94 kg N m-3 d-1 at 20 °C) was achieved with a high-level effluent quality (<3.0 mg TN L-1) in a lab-scale membrane granular sludge reactor (MGSR). With decreasing temperature, the nitrogen removal rate dropped to 0.55 kg N m-3 d-1 at 10 °C, while the effluent concentration remained <1.0 mg TN L-1. The granular sludge with an average diameter of 1.8 mm proved to retain sufficient biomass (27 g VSS L-1), which enabled n-DAMO and Anammox activity at a hydraulic retention time as low as 2.16 h even at 10 °C. 16S rRNA gene sequencing and scanning electron microscopy revealed a stable community composition and compact structure of granular sludge during long-term operation. Energy recovery could be maximized by recovering most of the dissolved methane in mainstream anaerobic effluent, as only a small amount of dissolved methane was capable of supporting denitrifying methanotrophs in granular sludge, which enabled high-level nitrogen removal.


Asunto(s)
Compuestos de Amonio , Metano , Oxidación Anaeróbica del Amoníaco , Anaerobiosis , Reactores Biológicos , Desnitrificación , Nitrógeno , Oxidación-Reducción , ARN Ribosómico 16S/genética , Aguas del Alcantarillado , Temperatura
7.
Environ Res ; 193: 110533, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33285154

RESUMEN

Combining nitrate/nitrite dependent anaerobic methane oxidation (n-DAMO) and anaerobic ammonium oxidation (Anammox) is a promising sustainable wastewater treatment technology, which simultaneously achieve nitrogen removal and methane emission mitigation. However, the practical application of n-DAMO has been greatly limited by its extremely slow growth-rate and low reaction rate. This work proposes an innovative Membrane BioTrickling Filter (MBTF), which consist of hollow fiber membrane for effective methane supplementation and polyurethane sponge as support media for the attachment and growth of biofilm coupling n-DAMO with Anammox. When steady state with a hydraulic retention time (HRT) of 6.00 h was reached, above 99.9% of nitrogen was removed from synthetic sidestream wastewater at a rate of 3.99 g N L-1 d-1. This system presented robust capacity to withstand unstable partial nitritation effluent, achieving complete nitrogen removal at a varied nitrite to ammonium ratio in the range of 1.10-1.40. It is confirmed that n-DAMO and Anammox microorganisms jointly dominated the microbial community by pyrosequencing technology. The complete nitrogen removal potential at high-rate and efficient biomass retention (12.4 g VSS L-1) of MBTF offers promising alternative for sustainable wastewater treatment by the combination of n-DAMO and Anammox.


Asunto(s)
Compuestos de Amonio , Metano , Anaerobiosis , Reactores Biológicos , Desnitrificación , Nitratos , Nitritos , Nitrógeno , Oxidación-Reducción
8.
Environ Sci Technol ; 54(1): 297-305, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31790207

RESUMEN

This work developed a novel Membrane Granular Sludge Reactor (MGSR) equipped with a gas permeable membrane module for efficient methane delivery to cultivate nitrate/nitrite dependent anaerobic methane oxidation (n-DAMO) microorganisms in granular sludge. As proof of concept, the MGSR was fed with synthetic wastewater containing nitrate and ammonium to facilitate the growth of n-DAMO microorganisms. The granular sludge of n-DAMO and Anammox was gradually developed and achieved a nitrogen removal rate of 1.08 g NO3--N L-1 d-1 and 0.81 g NH4+-N L-1 d-1. Finally, enriched granular sludge was successfully applied for nitrogen removal from the synthetic partial nitritation effluent. The combined dominance of n-DAMO archaea, Anammox bacteria, and n-DAMO bacteria in the microbial community was confirmed by 16S rRNA amplicon sequencing. Fluorescence in situ hybridization revealed that a layered structure was formed in the granular sludge with Anammox bacteria in the outer layer and n-DAMO microorganisms in the inner layer when granules were fed with nitrite and ammonium. The high performance of nitrogen removal (16.53 kg N m-3 d-1) with satisfactory effluent quality (∼8 mg N L-1) and excellent biomass retention capacity (43 g VSS L-1) make the MGSR promising for the practical application of n-DAMO and Anammox in wastewater treatment.


Asunto(s)
Compuestos de Amonio , Metano , Anaerobiosis , Reactores Biológicos , Desnitrificación , Hibridación Fluorescente in Situ , Nitritos , Nitrógeno , Oxidación-Reducción , ARN Ribosómico 16S , Aguas del Alcantarillado
9.
Environ Res ; 186: 109579, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32668542

RESUMEN

The integration of nitrate/nitrite dependent anaerobic methane oxidation (n-DAMO) and anaerobic ammonium oxidation (Anammox) provides sustainable solution to simultaneously remove nitrate, nitrite and ammonium. This study demonstrated the sludge granulation process coupling n-DAMO and Anammox from mixed inoculum including river sediment, return activated sludge and crushed anaerobic granule sludge in a novel membrane granular sludge reactor (MGSR). Flocculent biomass gradually turned into compact aggregates and retained as granular sludge with an average diameter of 2.2 mm in MGSR after 684 days' operation. When steady state with a hydraulic retention time of 1.19 days was reached, the MGSR achieved a nitrogen removal rate of 1.77 g N L-1 d-1. Granules with density of 1.043 g mL-1, settling velocity of 72 m h-1 and sludge volume index of 22 mL g-1 leaded to excellent biomass retention (42 g VSS L-1). Pyrosequencing analysis revealed that two dominant microbial groups, n-DAMO archaea and Anammox bacteria, in the microbial community of the granule were enriched to 31.09% and 12.45%. Fluorescence in situ hybridization revealed a homogenous distribution of n-DAMO archaea and Anammox bacteria throughout the granule. The granular sludge coupling n-DAMO and Anammox microorganisms provides significant potential for high rate nitrogen removal from wastewater.


Asunto(s)
Compuestos de Amonio , Metano , Anaerobiosis , Reactores Biológicos , Desnitrificación , Hibridación Fluorescente in Situ , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado
10.
J Nanosci Nanotechnol ; 14(4): 2829-35, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24734697

RESUMEN

A nano-porous TiO2 layer was produced by spray-deposition using ultrafine anatase nano-particles for the blocking layer for the dye-sensitized solar cells (DSCs). The microstructure and the electrochemical properties of the spray-deposited TiO2 layer were examined. The results of electrochemical properties showed that the spray-deposited TiO2 layer was capable to suppress the I3- ions diffusion to FTO substrate, reducing the electron recombination between the electrons on FTO substrate and I3- ions in electrolyte. In addition, the connection between TiO2 film and FTO substrate was improved by the TiO2 layer. Therefore, the short circuit current density and thereby the photo-to-electric energy conversion efficiency were improved by this blocking layer. The blocking effect of the porous layer was attributed to both the complicated pore structure of the spray-deposited layer and the enhanced connections between TiO2 film and FTO substrate. The low temperature characteristic of spray deposition approach indicates that it is suitable to the flexible-based DSCs.

11.
Water Res ; 267: 122489, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39326185

RESUMEN

Dissimilatory iron-reducing bacteria (DIRB) with extracellular electron transfer (EET) capabilities have shown significant potential for bioremediating halogenated hydrocarbon contaminated sites rich in iron and humic substances. However, the role and microbial molecular mechanisms of iron-humic acid (Fe-HA) complexes in the reductive dehalogenation process of DIRB remains inadequately elucidated. In this study, we developed a sustainable carbon cycling approach using Fe-HA complexes to modulate the electron flux from sawdust (SD), enabling almost complete reductive dechlorination by most DIRB (e.g., Shewanella oneidensis MR-1) that lack complex iron-sulfur molybdo enzymes. The SD-Fe-HA/MR-1 system achieved a 96.52% removal efficiency of tetrachloroethylene (PCE) at concentrations up to 250 µmol/L within 60 days. Material characterization revealed that DIRB facilitated the hydrolysis of macromolecular carbon sources by inducing the formation of amorphous ferrihydrite (FeOOH) in Fe-HA complexes. More importantly, the bioavailable FeOOH activated additional intracellular electron flow pathways, increasing the activity of potential dehalogenases. Transcriptome further highlight the innovative role of biogenic amorphous FeOOH in integrating intracellular redox metabolism with extracellular charge exchange to facilitate reductive dechlorination in DIRB. These findings provide novel insights into accelerating reductive dechlorination in-situ contaminated sites lacking obligate dehalogenating bacteria.

12.
Sci Total Environ ; 904: 166633, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659562

RESUMEN

The process of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) coupled with anaerobic ammonium oxidation (Anammox) is one of groundbreaking discoveries for nitrogen removal and methane emission reduction from wastewater simultaneously. Yet its treatment of mainstream wastewater at low temperature is still a major challenge. In this work, a one-dimensional granular sludge model incorporating Arrhenius conversion for temperature effects was constructed to depict the relationships among n-DAMO microorganisms and Anammox. The model framework was successfully evaluated with 380 days measurement data from a membrane granular sludge reactor (MGSR) operated at temperature of 20-10 °C and fed with ammonium and nitrite. The model could satisfactorily predict the kinetics of nitrogen removal rates, effluent nitrogen concentrations and biomass fractions in MGSR at varying temperatures. Despite the decrease in microbial activity of functional microorganisms, the coupled n-DAMO and Anammox process based on granule system in mainstream wastewater treatment achieved a TN removal efficiency of about 98 % and a stable nitrogen removal rate of 0.55 g L-1 d-1. The model developed is expected to facilitate fundamentally understanding the underlying mechanisms of the coupled process and provide proposals for its practical engineering application in wastewater treatment plants.


Asunto(s)
Compuestos de Amonio , Nitratos , Nitritos , Aguas del Alcantarillado , Temperatura , Aguas Residuales , Anaerobiosis , Metano , Oxidación Anaeróbica del Amoníaco , Desnitrificación , Reactores Biológicos , Oxidación-Reducción , Nitrógeno
13.
Water Res ; 244: 120448, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619305

RESUMEN

Granular sludge combined n-DAMO and Anammox (n-D/A) is an energy-efficient biotechnique for the simultaneous removal of nitrogen and dissolved methane from wastewater. However, the lack of knowledge so far about the metabolic interactions between n-DAMO and Anammox in response to operation condition in granular sludge restrains the development of this biotechnology. To address this gap, three independent membrane granular sludge reactors (MGSRs) were designed to carry out the granule-based n-D/A process under different conditions. We provided the first deep insights into the metabolic interactions between n-DAMO and Anammox in granular sludge via combined metagenomic and metatranscriptomic analyses. Our study unveiled a clear population shift of n-DAMO community from Candidatus Methanoperedens to Candidatus Methylomirabilis from sidestream to mainstream. Candidatus Methanoperedens with relative abundance of 25.2% played the major role in nitrate reduction and methane oxidation under sidestream condition, indicated by the high expression activities of mcrA and narG. Candidatus Methylomirabilis dominated the microbial community under mainstream condition with relative abundance of 32.1%, supported by the high expression activities of pmoA and hao. Furthermore, a transition of Anammox population from Candidatus Kuenenia to Candidatus Brocadia was also observed from sidestream to mainstream. Candidatus Kuenenia and Candidatus Brocadia jointly contributed to the primary anaerobic ammonium oxidation suggested by the high expression value of hdh and hzs. Candidatus Methylomirabilis was speculated to perform ammonium oxidation mediated by pMMO under mainstream condition. These findings might help to reveal the microbial interactions and ecological niches of n-DAMO and Anammox microorganisms, shedding light on the optimization and management of the granule-based n-D/A system.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Anaerobiosis , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Desnitrificación , Bacterias/genética , Bacterias/metabolismo , Oxidación-Reducción , Metano/metabolismo , Compuestos de Amonio/metabolismo , Nitrógeno/metabolismo
14.
Langmuir ; 26(16): 13644-9, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20695615

RESUMEN

Ordered multimodal porous carbon (OMPC) was explored as a counter electrode in ruthenium complex dye-sensitized solar cells (DSSCs) and CdSe quantum-dot solar cells (QDSCs). The unique structural characteristics such as large surface area and well-developed three-dimensional (3-D) interconnected ordered macropore framework with open mesopores embedded in the macropore walls make the OMPC electrodes have high catalytic activities and fast mass transfer kinetics toward both triiodide/iodide and polysulfide electrolytes. The efficiency (ca. 8.67%) of the OMPC based DSSC is close to that (ca. 9.34%) of the Pt based one. Most importantly, the QDSC employing OMPC material presents a high efficiency of up to 4.36%, which is significantly higher than those of Pt- and activated carbon based solar cells, ca. 2.29% and 3.30%, respectively.

15.
Langmuir ; 26(13): 11238-43, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20334406

RESUMEN

Hierarchical nanostructured carbon with a hollow macroporous core of ca. 60 nm in diameter in combination with mesoporous shell of ca. 30 nm in thickness has been explored as counter electrode in metal-free organic dye-sensitized solar cell. Compared with other porous carbon counterparts such as activated carbon and ordered mesoporous carbon CMK-3 and Pt counter electrode, the superior structural characteristics including large specific surface area and mesoporous volume and particularly the unique hierarchical core/shell nanostructure along with 3D large interconnected interstitial volume guarantee fast mass transport in hollow macroporous core/mesoporous shell carbon (HCMSC), and enable HCMSC to have highly enhanced catalytic activity toward the reduction of I(3)(-), and accordingly considerably improved photovoltaic performance. HCMSC exhibits a V(oc) of 0.74 V, which is 20 mV higher than that (i.e., 0.72 V) of Pt. In addition, it also demonstrates a fill factor of 0.67 and an energy conversion efficiency of 7.56%, which are markedly higher than those of its carbon counterparts and comparable to that of Pt (i.e., fill factor of 0.70 and conversion efficiency of 7.79%). Furthermore, HCMSC possesses excellent chemical stability in the liquid electrolyte containing I(-)/I(3)(-) redox couples, namely, after 60 days of aging, ca. 87% of its initial efficiency is still achieved by the solar cell based on HCMSC counter electrode.

16.
World Neurosurg ; 116: e86-e91, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29807177

RESUMEN

OBJECTIVE: Owing to increasing use of Gamma Knife surgery (GKS) for trigeminal neuralgia (TN), physicians are challenged over the problem of choosing an appropriate treatment if GKS fails. The aim of this study was to determine whether microvascular decompression (MVD) is a safe and effective alternative therapy for trigeminal neuralgia in patients with failed GKS. METHODS: Between January 1, 2010, and January 1, 2012, data of 32 patients with trigeminal neuralgia who presented with persistent or recurrent pain after GKS and elected to undergo MVD were collected. Clinical characteristics, operative findings, outcomes of MVD, and complications were reviewed. RESULTS: Mean interval time between GKS and MVD was 16 ± 5.64 months (range, 6-27 months). During MVD, the most common offending vessel was the superior cerebellar artery, followed by the anterior inferior cerebellar artery and vertebral artery. Immediately after MVD, 29 patients (90.63%) experienced complete pain relief without medication. At the end of the follow-up period, 25 patients were pain-free without medication. CONCLUSIONS: Our data confirm that MVD is an effective and safe alternative therapy after GKS, although the risk of facial numbness seems higher in patients with a history of GKS than in patients without a history of GKS.


Asunto(s)
Cirugía para Descompresión Microvascular , Complicaciones Posoperatorias/cirugía , Radiocirugia , Neuralgia del Trigémino/cirugía , Adulto , Anciano , Femenino , Humanos , Masculino , Cirugía para Descompresión Microvascular/métodos , Persona de Mediana Edad , Dimensión del Dolor , Satisfacción del Paciente , Radiocirugia/métodos , Recurrencia , Resultado del Tratamiento
17.
Chem Commun (Camb) ; 51(4): 685-8, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25415533

RESUMEN

Novel photosensitizers (PSs) with formyl bipyridyl ligands in different positions were developed to improve the electron transfer from an iridium complex PS to a colloidal platinum catalyst, resulting in much higher turnover numbers than the non-formyl bipyridyl Ir-PS in photocatalytic hydrogen generation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA