Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 48(10): 5639-5655, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32352519

RESUMEN

Cohesin SA1 (STAG1) and SA2 (STAG2) are key components of the cohesin complex. Previous studies have highlighted the unique contributions by SA1 and SA2 to 3D chromatin organization, DNA replication fork progression, and DNA double-strand break (DSB) repair. Recently, we discovered that cohesin SA1 and SA2 are DNA binding proteins. Given the recently discovered link between SA2 and RNA-mediated biological pathways, we investigated whether or not SA1 and SA2 directly bind to RNA using a combination of bulk biochemical assays and single-molecule techniques, including atomic force microscopy (AFM) and the DNA tightrope assay. We discovered that both SA1 and SA2 bind to various RNA containing substrates, including ssRNA, dsRNA, RNA:DNA hybrids, and R-loops. Importantly, both SA1 and SA2 localize to regions on dsDNA that contain RNA. We directly compared the SA1/SA2 binding and R-loops sites extracted from Chromatin Immunoprecipitation sequencing (ChIP-seq) and DNA-RNA Immunoprecipitation sequencing (DRIP-Seq) data sets, respectively. This analysis revealed that SA1 and SA2 binding sites overlap significantly with R-loops. The majority of R-loop-localized SA1 and SA2 are also sites where other subunits of the cohesin complex bind. These results provide a new direction for future investigation of the diverse biological functions of SA1 and SA2.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Estructuras R-Loop , Proteínas de Unión al ARN/metabolismo , Sitios de Unión , ADN/metabolismo , ARN/metabolismo , Cohesinas
2.
Aquac Nutr ; 2022: 6866578, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36860458

RESUMEN

Vitamin C (VC) plays an essential role in fish physiological function and normal growth. However, its effects and requirement of coho salmon Oncorhynchus kisutch (Walbaum, 1792) are still unknown. Based on the influences on growth, serum biochemical parameters, and antioxidative ability, an assessment of dietary VC requirement for coho salmon postsmolts (183.19 ± 1.91 g) was conducted with a ten-week feeding trial. Seven isonitrogenous (45.66% protein) and isolipidic (10.76% lipid) diets were formulated to include graded VC concentrations of 1.8, 10.9, 50.8, 100.5, 197.3, 293.8, and 586.7 mg/kg, respectively. Results showed that VC markedly improved the growth performance indexes and liver VC concentration, enhanced the hepatic and serum antioxidant activities, and increased the contents of serum alkaline phosphatase (AKP) activity, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and total cholesterol (TC) whereas decreased the serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) activities, and triglyceride (TG) level. Polynomial analysis showed that the optimal VC levels in the diet of coho salmon postsmolts were 188.10, 190.68, 224.68, 132.83, 156.57, 170.12, 171.00, 185.50, 142.77, and 93.08 mg/kg on the basis of specific growth rate (SGR), feed conversion ratio (FCR), liver VC concentration, catalase (CAT), hepatic superoxide dismutase (SOD) activities, malondialdehyde (MDA) content, and serum total antioxidative capacity (T-AOC), AKP, AST, and ALT activities, respectively. The dietary VC requirement was in the range of 93.08-224.68 mg/kg for optimum growth performance, serum enzyme activities, and antioxidant capacity of coho salmon postsmolts.

3.
J Virol ; 94(21)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32817218

RESUMEN

Fiber proteins are commonly found in eukaryotic and prokaryotic viruses, where they play important roles in mediating viral attachment and host cell entry. They typically form trimeric structures and are incorporated into virions via noncovalent interactions. Orsay virus, a small RNA virus which specifically infects the laboratory model nematode Caenorhabditis elegans, encodes a fibrous protein δ that can be expressed as a free protein and as a capsid protein-δ (CP-δ) fusion protein. Free δ has previously been demonstrated to facilitate viral exit following intracellular expression; however, the biological significance and prevalence of CP-δ remained relatively unknown. Here, we demonstrate that Orsay CP-δ is covalently incorporated into infectious particles, the first example of any attached viral fibers known to date. The crystal structure of δ(1-101) (a deletion mutant containing the first 101 amino acid [aa] residues of δ) reveals a pentameric, 145-Å long fiber with an N-terminal coiled coil followed by multiple ß-bracelet repeats. Electron micrographs of infectious virions depict particle-associated CP-δ fibers with dimensions similar to free δ. The δ proteins from two other nematode viruses, Le Blanc and Santeuil, which both specifically infect Caenorhabditis briggsae, were also found to form fibrous molecules. Recombinant Le Blanc δ was able to block Orsay virus infection in worm culture and vice versa, suggesting these two viruses likely compete for the same cell receptor(s). Thus, we propose that while CP-δ likely mediates host cell attachment for all three nematode viruses, additional downstream factor(s) ultimately determine the host specificity and range of each virus.IMPORTANCE Viruses often have extended fibers to mediate host cell recognition and entry, serving as promising targets for antiviral drug development. Unlike other known viral fibers, the δ proteins from the three recently discovered nematode viruses are incorporated into infectious particles as protruding fibers covalently linked to the capsid. Crystal structures of δ revealed novel pentameric folding repeats, which we term ß-bracelets, in the intermediate shaft region. Based on sequence analysis, the ß-bracelet motif of δ is conserved in all three nematode viruses and could account for ∼60% of the total length of the fiber. Our study indicated that δ plays important roles in cell attachment for this group of nematode viruses. In addition, the tightly knitted ß-bracelet fold, which presumably allows δ to survive harsh environments in the worm gut, could be applicable to bioengineering applications given its potentially high stability.


Asunto(s)
Proteínas de la Cápside/química , Nodaviridae/ultraestructura , Poliproteínas/química , Escleroproteínas/química , Proteínas Virales/química , Virión/ultraestructura , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/virología , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Especificidad del Huésped , Modelos Moleculares , Nodaviridae/genética , Nodaviridae/metabolismo , Poliproteínas/genética , Poliproteínas/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escleroproteínas/genética , Escleroproteínas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/genética , Virión/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(32): 8550-8555, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739952

RESUMEN

Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.


Asunto(s)
Orthomyxoviridae/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/ultraestructura , Cristalografía por Rayos X , Virus de la Influenza A/química , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Orthomyxoviridae/fisiología , Polimerizacion , Proteínas Virales/metabolismo , Virión/metabolismo , Liberación del Virus/fisiología
5.
J Biol Chem ; 293(3): 1054-1069, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29175904

RESUMEN

Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids, mediated by the cohesin protein complex, which also plays crucial roles in diverse genome maintenance pathways. Current models attribute DNA binding by cohesin to entrapment of dsDNA by the cohesin ring subunits (SMC1, SMC3, and RAD21 in humans). However, the biophysical properties and activities of the fourth core cohesin subunit SA2 (STAG2) are largely unknown. Here, using single-molecule atomic force and fluorescence microscopy imaging as well as fluorescence anisotropy measurements, we established that SA2 binds to both dsDNA and ssDNA, albeit with a higher binding affinity for ssDNA. We observed that SA2 can switch between the 1D diffusing (search) mode on dsDNA and stable binding (recognition) mode at ssDNA gaps. Although SA2 does not specifically bind to centromeric or telomeric sequences, it does recognize DNA structures often associated with DNA replication and double-strand break repair, such as a double-stranded end, single-stranded overhang, flap, fork, and ssDNA gap. SA2 loss leads to a defect in homologous recombination-mediated DNA double-strand break repair. These results suggest that SA2 functions at intermediate DNA structures during DNA transactions in genome maintenance pathways. These findings have important implications for understanding the function of cohesin in these pathways.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Reparación del ADN/genética , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Polarización de Fluorescencia , Inestabilidad Genómica/genética , Inestabilidad Genómica/fisiología , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Unión Proteica/genética , Unión Proteica/fisiología , Cohesinas
6.
J Virol ; 92(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29743360

RESUMEN

Nonenveloped gastrointestinal viruses, such as human rotavirus, can exit infected cells from the apical surface without cell lysis. The mechanism of such nonlytic exit is poorly understood. The nonenveloped Orsay virus is an RNA virus infecting the intestine cells of the nematode Caenorhabditis elegans Dye staining results suggested that Orsay virus exits from the intestine of infected worms in a nonlytic manner. Therefore, the Orsay virus-C. elegans system provides an excellent in vivo model to study viral exit. The Orsay virus genome encodes three proteins: RNA-dependent RNA polymerase, capsid protein (CP), and a nonstructural protein, δ. δ can also be expressed as a structural CP-δ fusion. We generated an ATG-to-CTG mutant virus that had a normal CP-δ fusion but could not produce free δ due to the lack of the start codon. This mutant virus showed a viral exit defect without obvious phenotypes in other steps of viral infection, suggesting that δ is involved in viral exit. Ectopically expressed free δ localized near the apical membrane of intestine cells in C. elegans and colocalized with ACT-5, an intestine-specific actin that is a component of the terminal web. Orsay virus infection rearranged ACT-5 apical localization. Reduction of the ACT-5 level via RNA interference (RNAi) significantly exacerbated the viral exit defect of the δ mutant virus, suggesting that δ and ACT-5 functionally interact to promote Orsay virus exit. Together, these data support a model in which the viral δ protein interacts with the actin network at the apical side of host intestine cells to mediate the polarized, nonlytic egress of Orsay virus.IMPORTANCE An important step of the viral life cycle is how viruses exit from host cells to spread to other cells. Certain nonenveloped viruses can exit cultured cells in nonlytic ways; however, such nonlytic exit has not been demonstrated in vivo In addition, it is not clear how such nonlytic exit is achieved mechanistically in vivo Orsay virus is a nonenveloped RNA virus that infects the intestine cells of the nematode C. elegans It is currently the only virus known to naturally infect C. elegans Using this in vivo model, we show that the δ protein encoded by Orsay virus facilitates the nonlytic exit of the virus, possibly by interacting with host actin on the apical side of worm intestine cells.


Asunto(s)
Caenorhabditis elegans/virología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Nodaviridae/patogenicidad , Infecciones por Virus ARN/virología , Proteínas Virales/metabolismo , Liberación del Virus , Replicación Viral , Animales , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Infecciones por Virus ARN/metabolismo , Proteínas Virales/genética
7.
PLoS Pathog ; 13(2): e1006231, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28241071

RESUMEN

Despite the wide use of Caenorhabditis elegans as a model organism, the first virus naturally infecting this organism was not discovered until six years ago. The Orsay virus and its related nematode viruses have a positive-sense RNA genome, encoding three proteins: CP, RdRP, and a novel δ protein that shares no homology with any other proteins. δ can be expressed either as a free δ or a CP-δ fusion protein by ribosomal frameshift, but the structure and function of both δ and CP-δ remain unknown. Using a combination of electron microscopy, X-ray crystallography, computational and biophysical analyses, here we show that the Orsay δ protein forms a ~420-Å long, pentameric fiber with an N-terminal α-helical bundle, a ß-stranded filament in the middle, and a C-terminal head domain. The pentameric nature of the δ fiber has been independently confirmed by both mass spectrometry and analytical ultracentrifugation. Recombinant Orsay capsid containing CP-δ shows protruding long fibers with globular heads at the distal end. Mutant viruses with disrupted CP-δ fibers were generated by organism-based reverse genetics. These viruses were found to be either non-viable or with poor infectivity according to phenotypic and qRT-PCR analyses. Furthermore, addition of purified δ proteins to worm culture greatly reduced Orsay infectivity in a sequence-specific manner. Based on the structure resemblance between the Orsay CP-δ fiber and the fibers from reovirus and adenovirus, we propose that CP-δ functions as a cell attachment protein to mediate Orsay entry into worm intestine cells.


Asunto(s)
Caenorhabditis elegans/virología , Proteínas de la Cápside/ultraestructura , Virus ARN/fisiología , Internalización del Virus , Animales , Proteínas de la Cápside/química , Dicroismo Circular , Cristalografía por Rayos X , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Mutagénesis Sitio-Dirigida , Organismos Modificados Genéticamente , Infecciones por Virus ARN , Virus ARN/ultraestructura , Virión/química , Virión/ultraestructura
8.
Nucleic Acids Res ; 44(13): 6363-76, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27298259

RESUMEN

Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids. Cohesion is thought to occur through the entrapment of DNA within the tripartite ring (Smc1, Smc3 and Rad21) with enforcement from a fourth subunit (SA1/SA2). Surprisingly, cohesin rings do not play a major role in sister telomere cohesion. Instead, this role is replaced by SA1 and telomere binding proteins (TRF1 and TIN2). Neither the DNA binding property of SA1 nor this unique telomere cohesion mechanism is understood. Here, using single-molecule fluorescence imaging, we discover that SA1 displays two-state binding on DNA: searching by one-dimensional (1D) free diffusion versus recognition through subdiffusive sliding at telomeric regions. The AT-hook motif in SA1 plays dual roles in modulating non-specific DNA binding and subdiffusive dynamics over telomeric regions. TRF1 tethers SA1 within telomeric regions that SA1 transiently interacts with. SA1 and TRF1 together form longer DNA-DNA pairing tracts than with TRF1 alone, as revealed by atomic force microscopy imaging. These results suggest that at telomeres cohesion relies on the molecular interplay between TRF1 and SA1 to promote DNA-DNA pairing, while along chromosomal arms the core cohesin assembly might also depend on SA1 1D diffusion on DNA and sequence-specific DNA binding.


Asunto(s)
Segregación Cromosómica/genética , Proteínas Nucleares/genética , Proteínas de Unión a Telómeros/genética , Telómero/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Secuencias AT-Hook/genética , Cromátides/genética , Cromátides/ultraestructura , Proteínas de Unión al ADN/genética , Humanos , Microscopía de Fuerza Atómica , Mitosis/genética , Proteínas Nucleares/metabolismo , Telómero/ultraestructura , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo
9.
mBio ; 13(1): e0349721, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35073744

RESUMEN

LysR-type transcriptional regulators (LTTRs), which function in diverse biological processes in prokaryotes, are composed of a conserved structure with an N-terminal DNA-binding domain (DBD) and a C-terminal signal-sensing regulatory domain (RD). LTTRs that sense and respond to the same signal are often functionally exchangeable in bacterial species across wide phyla, but this phenomenon has not been demonstrated for the H2O2-sensing and -responding OxyRs. Here, we systematically examined the biochemical and structural determinants differentiating activator-only OxyRs from dual-activity ones by comparing OxyRs from two Gammaproteobacteria, Escherichia coli and Shewanella oneidensis. Our data show that EcOxyR could function as neither an activator nor a repressor in S. oneidensis. Using SoOxyR-based OxyR chimeras and mutants, we demonstrated that residues 283 to 289, which form the first half of the last C-terminal α-helix (α10), are critical for the proper function of SoOxyR and cannot be replaced with the EcOxyR counterpart. Crystal structural analysis reveals that α10 is important for the oligomerization of SoOxyR, which, unlike EcOxyR, forms several high-order oligomers upon DNA binding. As the mechanisms of OxyR oligomerization vary substantially among bacterial species, our findings underscore the importance of subtle structural features in determining regulatory activities of structurally similar proteins descending from a common ancestor. IMPORTANCE Evolution may drive homologous proteins to be functionally nonexchangeable in different organisms. However, much is unknown about the mechanisms underlying this phenomenon beyond amino acid substitutions. Here, we systematically examined the biochemical and structural determinants differentiating functionally nonexchangeable OxyRs, H2O2-responding transcriptional regulators from two Gammaproteobacteria, Escherichia coli and Shewanella oneidensis. Using SoOxyR-based OxyR chimeras and mutants, we demonstrated that residues 283 to 289, which form the first half of the last C-terminal α-helix (α10), are critical for the proper function of SoOxyR and cannot be replaced with the EcOxyR counterpart. Crystal structural analysis reveals that this last helix is critical for formation of high-order oligomers upon DNA binding, a phenomenon not observed with EcOxyR. Our findings provide a new dimension to differences in sequence and structural features among bacterial species in determining regulatory activities of homologous regulators.


Asunto(s)
Proteínas de Escherichia coli , Shewanella , Escherichia coli/genética , Peróxido de Hidrógeno/metabolismo , Proteínas Bacterianas/metabolismo , Shewanella/genética , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA