Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(25): e202302617, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37186428

RESUMEN

Rechargeable magnesium batteries (RMBs) are seriously plagued by the direct exposure of the Mg anode to the electrolyte components, leading to spontaneous and electrochemical side reactions and interfacial passivation. Herein, a benign coordination layer is constructed at the Mg/electrolyte interface where aniline with a strong magnesiophilic amine group and high stability to Mg is chosen as representative, which has higher adsorption energy than DME (1,2-dimethoxyethane) and trace water. This Mg coordination environment mitigates side reactions, forming a non-passivating interface consisting of aniline and much fewer by-products after several cycles. Therefore, the Mg symmetrical cell operates with a low overpotential and uniform Mg0 deposition. This interfacial coordination can also be adopted for Mg anode protection in various electrolyte cases of Mg(TFSI)2 electrolyte systems.


Asunto(s)
Compuestos de Anilina , Magnesio , Adsorción , Electrodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38029370

RESUMEN

With the pursuit of high energy and power density, the fast-charging capability of lithium-metal batteries has progressively been the primary focus of attention. To prevent the formation of lithium dendrites during fast charging, the ideal solid electrolyte interphase should be capable of concurrent fast Li+ transport and uniform nucleation sites; however, its construction in a facile manner remains a challenge. Here, as Al3+ has a higher charge and Al metal is lithiophilic, we tuned the Li+ solvation structure by introducing LiNO3 and aluminum ethoxide together, resulting in the dissolution of LiNO3 and the simultaneous generation of fast ionic conductor and lithiophilic sites. Consequently, our approach facilitated the deposition of lithium metal in a uniform and chunky way, even at a high current density. As a result, the Coulombic efficiency of the Li||Cu cell increased to over 99%. Moreover, the Li||LiFePO4 full cell demonstrated significantly enhanced cycling performance with a remarkable capacity retention of 94.5% at 4 C, far superior to the 46.1% capacity retention observed with the base electrolyte.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA