Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 63(18): 8155-8162, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38651290

RESUMEN

Rare-earth metalloligand supported low-valent cobalt complexes were synthesized by utilizing a small-sized heptadentate phosphinomethylamine LsNH3 and a large-sized arene-anchored hexadentate phosphinomethylamine LlArH3 ligand precursors. The RE(III)-Co(-I)-N2 (RE = Sc, Lu, Y, Gd, La) complexes containing rare-earth metals including the smallest Sc and largest La were characterized by multinuclear NMR spectroscopy, X-ray diffraction analysis, electrochemistry, and computational studies. The Co(-I)→RE(III) dative interactions were all polarized with major contributions from the 3dz2 orbital of the cobalt center, which was slightly affected by the identity of rare-earth metalloligands. The IR spectroscopic data and redox potentials obtained from cyclic voltammetry revealed that the electronic property of the Co(-I) center was finely tuned by the rare-earth metalloligand, which was revealed by variation of the ligand systems containing LsN, LmN, and LlAr. Unlike the direct alteration of the electronic property of metal center via an ancillary ligand, such a series of rare-earth metalloligand represents a smooth strategy to tune the electronic property of transition metals.

2.
Angew Chem Int Ed Engl ; 63(20): e202402370, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426853

RESUMEN

In contrast to the well-documented acylating reactivity, the alkylating reactivity of the alkoxycarbonyl group, as signified by its oxocarbenium-like resonance structure, remains almost unexplored. Herein, the first series of Co/Ni dinuclear metalloesters exhibiting the novel oxocarbenium-like alkoxycarbonyl groups were synthesized and characterized. In these deformed alkoxycarbonyl groups, the Ccarbonyl-Oalkoxyl bonds were contracted to 1.177(11)~1.191(9) Šwith the elongations of the Ccarbonyl=Ocarbonyl bonds to 1.368(13)~1.441(9) Å. Meanwhile, the O-Calkyl bonds were also elongated to 1.522(11) ~1.607(15) Å, and were by far the longest O-Calkyl bonds reported for alkoxycarbonyl groups. As triggered by the long O-Calkyl distances, the alkylating reactivity of the oxocarbenium-like methoxycarbonyl group towards a series of C/N/O-nucleophiles via the rare BAL2 mechanism at ambient conditions was examined. Furthermore, the homo-etherifications of alcohols mediated by the Co/Ni dinuclear metalloesters were investigated. The yields followed the trend ethanol≫n-propanol≫n-butanol ≈n-pentanol, that closely related to the structure features of the alkoxycarbonyl groups in corresponding metalloesters: while the ethoxycarbonyl group showed the reactive oxocarbenium-like framework, the n-propoxycarbonyl group displayed the dioxocarbenium-like skeleton with a shorter O-Calkyl bond; In comparison, the classical frameworks with unactivated alkyl moieties were observed for n-butoxycarbonyl and n-pentoxycarbonyl groups.

3.
Inorg Chem ; 62(14): 5660-5668, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36961829

RESUMEN

In comparison with the research of transition-metal-tetrel complexes, the chemistry of lanthanide tetrel complexes, especially for these bearing heavier tetrel element ligands, is still relatively underexplored. In this research, K[Cp3Ln(III)CH2Ph], [(DME)3Li][Cp3Ln(III)GePh3], and [(DME)3Li][Cp3Ln(III)SnPh3] [Ln(III) = La(III), Ce(III)] have been synthesized by reacting [(DME)3Na][Cp3La(µ-Cl)LaCp3] or Cp3Ce(THF) with alkali metal alkyl, germyl, and stannyl reagents. Additionally, [(DME)3Li][Cp3Ce(III)SnPh3] is the first example of Ce(III)-Sn bond containing complex. All the obtained early Ln(III) tetrel ate-complexes were structurally analyzed by single-crystal X-ray diffraction. The formal shortness ratios of the Ln(III)-C, Ln(III)-Ge, and Ln(III)-Sn bonds are in the range of 1.03-1.11. Together with the previously reported [(DME)3Li][Cp3Ln(III)SiPh3], a group of tetrel (up to Sn) lanthanocene ate-complexes with an analogous coordination pattern are presented. Computational studies suggest the strongly polarized nature of the Ln(III)-E (E = C, Si, Ge, Sn) bonds in these complexes, with 77-85% atomic orbital contribution from tetrel elements and 15-23% atomic orbital contribution from Ln(III). The UV-vis measurements of this series of complexes show that the characteristic absorptions are hypsochromically shifted for Ln(III) heavier tetrel complexes in comparison to their lighter congeners. Moreover, the HOMOs, in which the Ln(III)-E σ-bonding orbitals are the dominant components, of these series complexes act as donor orbitals of the major electron transitions, as being disclosed by the time-dependent density functional theory analysis.

4.
Inorg Chem ; 62(9): 3836-3846, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36800534

RESUMEN

Sequential reactions of heptadentate phosphinoamine LH3 with rare-earth metal tris-alkyl precursor (Me3SiCH2)3Ln(THF)2 (Ln = Sc, Lu, Yb, Y, Gd) and a low-valent cobalt complex (Ph3P)3CoI afforded rare-earth metal-supported cobalt iodide complexes. Reduction of these iodide complexes under N2 allowed the isolation of the first series of dinitrogen complexes of Co(-I) featuring dative Co(-I) → Ln (Ln = Sc, Lu, Yb, Y, Gd) bonding interactions. These compounds were characterized by multinuclear NMR spectroscopy, X-ray diffraction analysis, electrochemistry, and computational studies. The correlation of N-N vibrational frequencies with the pKa of [Ln(H2O)6]3+ showed that strongest activation of N2 was achieved with the least Lewis acidic Gd(III) ion. Interestingly, these Ln-Co-N2 complexes catalyzed silylation of N2 in the presence of KC8 and Me3SiCl with turnover numbers (TONs) up to 16, where the lutetium-supported Co(-I) complex showed the highest activity within the series. The role of the Lewis acidic Ln(III) was crucial to achieve catalytic turnovers and tunable reactivity toward N2 functionalization.

5.
Inorg Chem ; 61(36): 14288-14296, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36040364

RESUMEN

While research on lanthanide (Ln) complexes with silyl ligands is receiving growing attention, significantly unbalanced efforts have been devoted to different Ln elements. In comparison with the intense investigations on Ln elements such as Sm and Yb, the chemistry of silyl lanthanum and cerium complexes is much slower to develop, and no solid-state structure of a silyl lanthanum complex has been reported so far. In this research, four types of ate complexes, including [(DME)3Li][Cp3LnSi(H)Mes2], [(18-crown-6)K][Cp3LnSi(CH3)Ph2], [(DME)3Li][Cp3LnSiPh3], and [(12-crown-4)2Na] [Cp3LnSi(Ph)2Si(H)Ph2] (Ln = La, Ce), were synthesized by reacting [(DME)3Na][Cp3La(µ-Cl)LaCp3] or Cp3Ce(THF) with alkali metal silanides. All of the synthesized silyl Ln ate complexes were structurally characterized. La-Si bond lengths are in a range of 3.1733(4)-3.1897(10) Å, and the calculated formal shortness ratios of the La-Si bonds (1.071.08) are comparable to those in the reported silyl complexes having other Ln metal centers. The Ce-Si bond lengths (3.1415(6)-3.1705(9) Å) are within the typical range of reported silyl cerium ate complexes. 29Si solid-state NMR measurements on the diamagnetic silyl lanthanum complexes were conducted, and large one-bond hyperfine splitting constants arising from = 7/2) were resolved. Computational studies on these silyl lanthanum and cerium complexes suggested the polarized covalent feature of the Ln-Si bonds, which is in line with the measured large 1J139La-Si splitting constants.

6.
Angew Chem Int Ed Engl ; 60(9): 4609-4613, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33201584

RESUMEN

Cyclobutenone has been used as a highly reactive dienophile in Diels-Alder reactions, however, no enantioselective example has been reported. We disclose herein a chiral oxazaborolidine-aluminum bromide catalyzed enantioselective Diels-Alder reaction of 3-alkoxycarbonyl cyclobutenone with a variety of dienes. Furthermore, a total synthesis of (-)-kingianin F was completed for the first time via enantioenriched cycloadduct bicyclo[4.2.0]octane derivative.

7.
J Am Chem Soc ; 141(6): 2421-2434, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30620571

RESUMEN

Iron(V)-nitrido and -oxo complexes have been proposed as key intermediates in a diverse array of chemical transformations. Herein we present a detailed electronic-structure analysis of [FeV(N)(TPP)] (1, TPP2- = tetraphenylporphyrinato), and [FeV(N)(cyclam-ac)]+ (2, cyclam-ac = 1,4,8,11-tetraazacyclotetradecane-1-acetato) using electron paramagnetic resonance (EPR) and 57Fe Mössbauer spectroscopy coupled with wave function based complete active-space self-consistent field (CASSCF) calculations. The findings were compared with all other well-characterized genuine iron(V)-nitrido and -oxo complexes, [FeV(N)(MePy2tacn)](PF6)2 (3, MePy2tacn = methyl- N', N″-bis(2-picolyl)-1,4,7-triazacyclononane), [FeV(N){PhB( t-BuIm)3}]+ (4, PhB(tBuIm)3- = phenyltris(3- tert-butylimidazol-2-ylidene)borate), and [FeV(O)(TAML)]- (5, TAML4- = tetraamido macrocyclic ligand). Our results revealed that complex 1 is an authenticated iron(V)-nitrido species and contrasts with its oxo congener, compound I, which contains a ferryl unit interacting with a porphyrin radical. More importantly, tetragonal iron(V)-nitrido and -oxo complexes 1-3 and 5 all possess an orbitally nearly doubly degenerate S = 1/2 ground state. Consequently, analogous near-axial EPR spectra with g|| < g⊥ ≤ 2 were measured for them, and their g|| and g⊥ values were found to obey a simple relation of g⊥2 + (2 - g∥)2 = 4. However, the bonding situation for trigonal iron(V)-nitrido complex 4 is completely different as evidenced by its distinct EPR spectrum with g|| < 2 < g⊥. Further in-depth analyses suggested that tetragonal low spin iron(V)-nitrido and -oxo complexes feature electronic structures akin to those found for complexes 1-3 and 5. Therefore, the characteristic EPR signals determined for 1-3 and 5 can be used as a spectroscopic marker to identify such highly reactive intermediates in catalytic processes.

8.
J Am Chem Soc ; 141(43): 17217-17235, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31566964

RESUMEN

Iron-nitrosyls have fascinated chemists for a long time due to the noninnocent nature of the NO ligand that can exist in up to five different oxidation and spin states. Coordination to an open-shell iron center leads to complex electronic structures, which is the reason Enemark-Feltham introduced the {Fe-NO}n notation. In this work, we succeeded in characterizing a series of {Fe-NO}6-9 complexes, including a reactive {Fe-NO}10 intermediate. All complexes were synthesized with the tris-N-heterocyclic carbene ligand tris[2-(3-mesitylimidazol-2-ylidene)ethyl]amine (TIMENMes), which is known to support iron in high and low oxidation states. Reaction of NOBF4 with [(TIMENMes)Fe]2+ resulted in formation of the {Fe-NO}6 compound [(TIMENMes)Fe(NO)(CH3CN)](BF4)3 (1). Stepwise chemical reduction with Zn, Mg, and Na/Hg leads to the isostructural series of high-spin iron nitrosyl complexes {Fe-NO}7,8,9 (2-4). Reduction of {Fe-NO}9 with Cs electride finally yields the highly reduced {Fe-NO}10 intermediate, key to formation of [Cs(crypt-222)][(TIMENMes)Fe(NO)], (5) featuring a metalacyclic [Fe-(NO-NHC)3-] nitrosoalkane unit. All complexes were characterized by single-crystal XRD analyses, temperature and field-dependent SQUID magnetization methods, as well as 57Fe Mössbauer, IR, UV/vis, multinuclear NMR, and dual-mode EPR spectroscopy. Spectroscopy-based DFT analyses provide insight into the electronic structures of all compounds and allowed assignments of oxidation states to iron and NO ligands. An alternative synthesis to the {Fe-NO}8 complex was found via oxygenation of the nitride complex [(TIMENMes)Fe(N)](BF4). Surprisingly, the resulting {Fe-NO}8 species is electronically and structural similar to the [(TIMENMes)Fe(N)]+ precursor. Based on the structural and electronic similarities between this nitrosyl/nitride complex couple, we adopted the strategy, developed by Wieghardt et al., of extending the Enemark-Feltham nomenclature to nitrido complexes, rendering [(TIMENMes)Fe(N)]+ as a {Fe-N}8 species.

9.
Chemistry ; 25(43): 10149-10155, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31131488

RESUMEN

The first heterobimetallic Pd-Sc complex featuring a very short Pd→Sc dative bond has been synthesized and characterized by multinuclear NMR spectroscopy, X-ray diffraction analysis, and electrochemistry. Computational studies elucidated the nature of the Pd→Sc bond as a donor-acceptor interaction, which generates a more electron-deficient Pd0 metal center as compared to that in the mono Pd0 complex in their reactions with isonitrile and carbon monoxide. Cooperative reactivity has been demonstrated in the reaction with MeI.

10.
J Am Chem Soc ; 140(42): 13575-13579, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30289709

RESUMEN

Herein, we reported a successful Suzuki-Miyaura coupling of dimethyl aryl amines to forge biaryl skeleton via Ni catalysis in the absence of directing groups and preactivation. This transformation proceeded with high efficiency in the presence of magnesium. Preliminary mechanism studies demonstrated dual roles of magnesium: (i) a reductant that reduced Ni(II) species to active Ni(I) catalyst; (ii) a unique promoter that facilitated the Ni(I)/Ni(III) catalytic cycle.

11.
J Am Chem Soc ; 140(21): 6656-6660, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29750869

RESUMEN

It is of fundamental importance to transform carbon monoxide (CO) to petrochemical feedstocks and fine chemicals. Many strategies built on the activation of C≡O bond by π-back bonding from the transition metal center were developed during the past decades. Herein, a new CO activation method, in which the CO was converted to the active acyl-like metalloradical, [(por)Rh(CO)]• (por = porphyrin), was reported. The reactivity of [(por)Rh(CO)]• and other rhodium porphyrin compounds, such as (por)RhCHO and (por)RhC(O)NH nPr, and corresponding mechanism studies were conducted experimentally and computationally and inspired the design of a new conversion system featuring 100% atom economy that promotes carbonylation of amines to formamides using porphyrin rhodium(II) metalloradical. Following this radical based pathway, the carbonylations of a series of primary and secondary aliphatic amines were examined, and turnover numbers up to 224 were obtained.

12.
Angew Chem Int Ed Engl ; 56(43): 13450-13454, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-28777883

RESUMEN

Purification of rare earth elements is challenging due to their chemical similarities. All of the deployed separation methods rely on thermodynamic properties, such as distribution equilibria in solvent extraction. Rare-earth-metal separations based on kinetic differences have not been examined. Herein, we demonstrate a new approach for rare-earth-element separations by exploiting differences in the oxidation rates within a series of rare earth compounds containing the redox-active ligand [{2-(tBuN(O))C6 H4 CH2 }3 N]3- . Using this method, a single-step separation factor up to 261 was obtained for the separation of a 50:50 yttrium-lutetium mixture.

13.
J Am Chem Soc ; 138(24): 7705-10, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27243114

RESUMEN

A tetra-coordinate, square planar germanium(IV) cation [(TPFC)Ge](+) (TPFC = tris(pentafluorophenyl)corrole) was synthesized quantitatively by the reaction of (TPFC)Ge-H with [Ph3C](+)[B(C6F5)4](¯). The highly reactive [(TPFC)Ge](+) cation reacted with benzene to form phenyl complex (TPFC)Ge-C6H5 through an electrophilic pathway. The key intermediate, a σ-type germylium-benzene adduct, [(TPFC)Ge(η(1)-C6H6)](+), was isolated and characterized by single-crystal X-ray diffraction. Deprotonation of [(TPFC)Ge(η(1)-C6H6)](+) cation led to the formation of (TPFC)Ge-C6H5. [(TPFC)Ge](+) also reacted with ethylene and cyclopropane in benzene at room temperature to form (TPFC)Ge-CH2CH2C6H5 and (TPFC)Ge-CH2CH2CH2C6H5, respectively. The observed electrophilic reactivity is ascribed to the highly exposed cationic germanium center with novel frontier orbitals comprising two vacant sp-hybridized orbitals that are not conjugated to π-system. The three electron-withdrawing pentafluorophenyl groups on the corrole ligand also enhance the electrophilicity of the cationic germanium corrole.

14.
J Am Chem Soc ; 138(43): 14186-14189, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27726348

RESUMEN

Bubbling O2 into a THF solution of CoII(BDPP) (1) at -90 °C generates an O2 adduct, Co(BDPP)(O2) (3). The resonance Raman and EPR investigations reveal that 3 contains a low spin cobalt(III) ion bound to a superoxo ligand. Significantly, at -90 °C, 3 can react with 2,2,6,6-tetramethyl-1-hydroxypiperidine (TEMPOH) to form a structurally characterized cobalt(III)-hydroperoxo complex, CoIII(BDPP)(OOH) (4) and TEMPO•. Our findings show that cobalt(III)-superoxo species are capable of performing hydrogen atom abstraction processes. Such a stepwise O2-activating process helps to rationalize cobalt-catalyzed aerobic oxidations and sheds light on the possible mechanism of action for Co-bleomycin.

15.
Angew Chem Int Ed Engl ; 55(18): 5457-62, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27028563

RESUMEN

A nickel(II) porphyrin Ni-P (P=porphyrin) bearing four meso-C6 F5 groups to improve solubility and activity was used to explore different hydrogen-evolution-reaction (HER) mechanisms. Doubly reduced Ni-P ([Ni-P](2-) ) was involved in H2 production from acetic acid, whereas a singly reduced species ([Ni-P](-) ) initiated HER with stronger trifluoroacetic acid (TFA). High activity and stability of Ni-P were observed in catalysis, with a remarkable ic /ip value of 77 with TFA at a scan rate of 100 mV s(-1) and 20 °C. Electrochemical, stopped-flow, and theoretical studies indicated that a hydride species [H-Ni-P] is formed by oxidative protonation of [Ni-P](-) . Subsequent rapid bimetallic homolysis to give H2 and Ni-P is probably involved in the catalytic cycle. HER cycling through this one-electron-reduction and homolysis mechanism has been proposed previously but rarely validated. The present results could thus have broad implications for the design of new exquisite cycles for H2 generation.

16.
J Am Chem Soc ; 137(22): 7122-7, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25985282

RESUMEN

(TPFC)Ge(TEMPO) (1, TPFC = tris(pentafluorophenyl)corrole, TEMPO(•) = (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) shows high reactivity toward E-H (E = N, O) bond cleavage in R1R2NH (R1R2 = HH, (n)PrH, (i)Pr2, Et2, PhH) and ROH (R = H, CH3) under visible light irradiation. Electron paramagnetic resonance (EPR) analyses together with the density functional theory (DFT) calculations reveal the E-H bond activation by [(TPFC)Ge](0)(2)/TEMPO(•) radical pair, generated by photocleavage of the labile Ge-O bond in compound 1, involving two sequential steps: (i) coordination of substrates to [(TPFC)Ge](0) and (ii) E-H bond cleavage induced by TEMPO(•) through proton coupled electron transfer (PCET).

17.
Inorg Chem ; 53(13): 7047-54, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24941110

RESUMEN

A series of tris(pentafluorophenyl)corrole (TPFC) tin(IV) and tin(II) complexes were prepared and studied by various characterization techniques including (1)H, (19)F, and (119)Sn NMR and UV-vis spectroscopy, mass spectrometry, and single-crystal X-ray diffraction. The unusual 4-coordinate, monomeric, divalent tin(II) complex [(TPFC)Sn(II)](-) (2a) showed highly efficient reactivity toward alkenes and alkyl halides via a nucleophilic addition pathway leading to the quantitative formation of alkyl stannyl corrole compounds. DFT calculations confirmed the divalent nature of the tin center in 2a, and an NBO analysis showed about 99.99% Sn lone pair character, of which 83.6% was Sn 5s and 16.35% was Sn 5p character.


Asunto(s)
Compuestos Orgánicos de Estaño/química , Compuestos Orgánicos de Estaño/síntesis química , Porfirinas/química , Alcanos/química , Alquenos/química , Indicadores y Reactivos , Indoles/química , Isoindoles , Modelos Moleculares
18.
Chem Commun (Camb) ; 60(31): 4222-4225, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38525969

RESUMEN

A N2-bridged tetranuclear Sc(III)-Ni(0) complex featuring a Ni → Sc interaction and a 4-membered [Sc-N-C-Ni] ring was synthesized and characterized. Bimetallic reactivity was demonstrated via reactions with a series of unsaturated compounds containing NC, CN, CC, CO and NN bonds.

19.
Nat Commun ; 15(1): 7724, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231963

RESUMEN

Unimolecular reduction and bimolecular reductive coupling of carbon monoxide (CO) represent important ways to synthesize organic feedstocks. Reductive activation of CO through open-shell pathways, though rare, can help overcome the barriers of many traditional organometallic elementary reactions that are hard to achieve. Herein we successfully achieve the unimolecular reduction of CO to (TPP)RhCH2OSiR1R2R3 (TPP = 5,10,15,20-tetraphenylporphyrin), and the release of products CH3OSiR1R2R3, TEMPO-CH2OSiR1R2R3 and BrCH2OSiR1R2R3 in near-quantitative yield under visible light (420-780 nm), which involves radical formation from Rh-C bond homolysis. Bimolecular CO reductive coupling products, (TPP)RhCOCH2OSiR1R2R3, are then obtained via a radical mechanism. Subsequent treatment with n-propylamine, BrCCl3 or TEMPO under thermal or photochemical conditions afford small-molecule bimolecular reductive coupling products. To the best of our knowledge, homogeneous systems which reductively couple CO under photochemical conditions have not been reported before. Here, the use of an open-shell transition metal complex, that delivers more than one kind of small-molecule CO reductive coupling products bearing different functional groups, provides opportunities for useful CO reductive transformations.

20.
Chem Commun (Camb) ; 59(22): 3245-3248, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36815508

RESUMEN

The reactive HO˙/(Salophent-Bu)Co(II) radical pair was observed to be generated via homolysis of the terminal Co(III)-OH bond in transient (Salophent-Bu)(L)Co(III)(OH) (L = Py, MeOH) complexes as indicated by UV-Vis and EPR measurements. Based on this elementary process, C-H bond activations in acetone, 2-butanone, acetonitrile and benzene were achieved under ambient conditions. For the reactions of the first three substrates, the alkylcobalt(III) complexes were formed as the products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA