Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nano Res ; 16(4): 5098-5107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36570861

RESUMEN

Magnetocontrollable droplet mobility on surfaces of both solids and simple fluids have been widely used in a wide range of applications. However, little is understood about the effect of the magnetic field on the wettability and mobility of droplets on structured fluids. Here, we report the manipulation of the dynamic behaviors of water droplets on a film of thermotropic liquid crystals (LCs). We find that the static wetting behavior and static friction of water droplets on a 4'-octyl-4-biphenylcarbonitrile (8CB) film strongly depend on the LC mesophases, and that a magnetic field caused no measurable change to these properties. However, we find that the droplet dynamics can be affected by a magnetic field as it slides on a nematic 8CB film, but not on isotropic 8CB, and is dependent on both the direction and strength of the magnetic field. By measuring the dynamic friction of a droplet sliding on a nematic 8CB film, we find that a magnetic field alters the internal orientational ordering of the 8CB which in turn affects its viscosity. We support this interpretation with a scaling argument using the LC magnetic coherence length that includes (i) the elastic energy from the long-range orientational ordering of 8CB and (ii) the free energy from the interaction between 8CB and a magnetic field. Overall, these results advance our understanding of droplet mobility on LC films and enable new designs for responsive surfaces that can manipulate the mobility of water droplets. Electronic Supplementary Material: Supplementary material (further details of the stability of LCIPS against water-induced dewetting, the interfacial tension and contact angle measurement using a goniometer, the estimation of the thickness of LC wrapping layer at air-water interface on droplets, SEM measurements, the average sliding velocity of a water droplet on 5CB, E7, silicone oil, and mineral oil films with and without a magnetic field, representative force diagram (Fd versus time) of a 3-µL water droplet moving at a speed of 0.1 mm/s on a nematic 8CB film, Fdynamic acting on 3 µL water droplets moving at speeds of 0.1-1 mm/s on an isotropic 8CB film, the calculated magnetic coherence length as a function of the magnitude of the magnetic field applied to the nematic LCIPS, and the apparent advancing and receding contact angles of a moving water droplet on nematic LCIPS as a function of time, and polarized light micrographs (top view) of a nematic 8CB film between two DMOAP-functionalized glass slides before and after applying a horizontal magnetic field) is available in the online version of this article at 10.1007/s12274-022-5318-y.

2.
Adv Mater ; 34(14): e2110085, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35089623

RESUMEN

Biomimetic artificial surfaces that enable the manipulation of gas bubble mobility have been explored in a wide range of applications in nanomaterial synthesis, surface defouling, biomedical diagnostics, and therapeutics. Although many superhydrophobic surfaces and isotropic-lubricant-infused porous surfaces have been developed to manipulate gas bubbles, the simultaneous control over the adhesion and transport of gas bubbles underwater remains a challenge. Thermotropic liquid crystals (LCs), a class of structured fluids, provide an opportunity to tune the behavior of gas bubbles through LC mesophase transitions using a variety of external stimuli. Using this central idea, the design and synthesis of LC-infused porous surfaces (LCIPS) is reported and the effects of the LC mesophase on the transport and adhesion of gas bubbles on LCIPS immersed in water elucidated. LCIPS are demonstrated to be a promising class of surfaces with an unprecedented level of responsiveness and functionality, which enables the design of cyanobacteria-inspired object movement, smart catalysts, and bubble gating devices to sense and sort volatile organic compounds and control oxygen levels in biomimetic cell cultures.


Asunto(s)
Cristales Líquidos , Cristales Líquidos/química , Fenómenos Físicos , Porosidad , Propiedades de Superficie , Agua/química
3.
Sci Adv ; 7(40): eabi7607, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34597134

RESUMEN

The ability to control both the mobility and chemical compositions of microliter-scale aqueous droplets is an essential prerequisite for next-generation open surface microfluidics. Independently manipulating the chemical compositions of aqueous droplets without altering their mobility, however, remains challenging. In this work, we address this challenge by designing a class of open surface microfluidic platforms based on thermotropic liquid crystals (LCs). We demonstrate, both experimentally and theoretically, that the unique positional and orientational order of LC molecules intrinsically decouple cargo release functionality from droplet mobility via selective phase transitions. Furthermore, we build sodium sulfide­loaded LC surfaces that can efficiently precipitate heavy metal ions in sliding water droplets to final concentration less than 1 part per million for more than 500 cycles without causing droplets to become pinned. Overall, our results reveal that LC surfaces offer unique possibilities for the design of novel open surface fluidic systems with orthogonal functionalities.

4.
Cell Rep Phys Sci ; 1(12): 100276, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33225318

RESUMEN

Rapid, robust virus-detection techniques with ultrahigh sensitivity and selectivity are required for the outbreak of the pandemic coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Here, we report that the femtomolar concentrations of single-stranded ribonucleic acid (ssRNA) of SARS-CoV-2 trigger ordering transitions in liquid crystal (LC) films decorated with cationic surfactant and complementary 15-mer single-stranded deoxyribonucleic acid (ssDNA) probe. More importantly, the sensitivity of the LC to the SARS ssRNA, with a 3-bp mismatch compared to the SARS-CoV-2 ssRNA, is measured to decrease by seven orders of magnitude, suggesting that the LC ordering transitions depend strongly on the targeted oligonucleotide sequence. Finally, we design a LC-based diagnostic kit and a smartphone-based application (app) to enable automatic detection of SARS-CoV-2 ssRNA, which could be used for reliable self-test of SARS-CoV-2 at home without the need for complex equipment or procedures.

5.
ACS Macro Lett ; 8(10): 1263-1267, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35651158

RESUMEN

We report the use of hyper-cross-linked polymers for synthesis of hollow porous polymeric nanosphere frameworks (HPPNFs) as highly efficient yolk-shell structured catalysts. This approach involves encapsulation of ligand-free metal nanoparticles within the hyper-cross-linked HPPNFs, giving rise to remarkable catalytic activity as well as outstanding reusability toward hydrogenation. By tuning the molecular size of the reactant, we demonstrate intrinsic size selectivity precisely defined by the HPPNF-based catalyst. Because the solvent polarity determines the porosity of the HPPNFs, it provides guidance to design a class of responsive and functional soft materials for use in catalysis technology.

6.
Nat Commun ; 10(1): 3862, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455776

RESUMEN

Current metal film-based electronics, while sensitive to external stretching, typically fail via uncontrolled cracking under a relatively small strain (~30%), which restricts their practical applications. To address this, here we report a design approach inspired by the stereocilia bundles of a cochlea that uses a hierarchical assembly of interfacial nanowires to retard penetrating cracking. This structured surface outperforms its flat counterparts in stretchability (130% versus 30% tolerable strain) and maintains high sensitivity (minimum detection of 0.005% strain) in response to external stimuli such as sounds and mechanical forces. The enlarged stretchability is attributed to the two-stage cracking process induced by the synergy of micro-voids and nano-voids. In-situ observation confirms that at low strains micro-voids between nanowire clusters guide the process of crack growth, whereas at large strains new cracks are randomly initiated from nano-voids among individual nanowires.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA