Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Xenobiotica ; 49(5): 591-601, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29737914

RESUMEN

1. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry (UPLC-ESI-QTOF MS)-based lipidomics was employed to elucidate new mechanism of alpha-naphthyl isothiocyanate (ANIT)-induced intrahepatic cholestasis in mice. 2. Multiple lipid components significantly increased in ANIT-induced intrahepatic cholestasis, including PC 16:0, 20:4, PC 16:0, 22:6, PC 16:0, 18:2, LPC 18:2, PC 18:2, LPC 18:1, PC 18:1, 14:0, SM 18:1, 16:0, oleoylcarnitine and palmitoylcarnitine. This alteration of lipid profile was induced by the changed expression of genes choline kinase (Chk) a, sphingomyelin phosphodiesterase (SMPD) and stearoyl-coenzyme A desaturase 1 (SCD1). 3. Knockout of aryl hydrocarbon receptor (Ahr) in mice can significantly reverse ANIT-induced intrahepatic cholestasis, as indicated by lowered ALT, AST and ALP activity, and liver histology. Aryl hydrocarbon receptor knockout significantly reversed ANIT-induced lipid metabolism alteration through regulating the expression of Chka. 4. In conclusion, this study demonstrated ANIT-induced lipid metabolism disruption might be the potential pathogenesis of ANIT-induced intrahepatic cholestasis in mice.


Asunto(s)
1-Naftilisotiocianato/toxicidad , Colestasis Intrahepática/inducido químicamente , Colestasis Intrahepática/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Colestasis Intrahepática/genética , Colestasis Intrahepática/patología , Metabolismo de los Lípidos/genética , Ratones , Ratones Noqueados , Receptores de Hidrocarburo de Aril/genética
2.
Xenobiotica ; 48(5): 452-458, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28548030

RESUMEN

1. Everolimus is an inhibitor of mammalian target of rapamycin (mTOR) and has been clinically utilized to prevent the rejection of organ transplants. This study aims to determine the inhibition of everolimus on the activity of phase-II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs). 2. The results showed that 100 µM of everolimus exerted more than 80% inhibition toward UGT1A1, UGT-1A3 and UGT-2B7. UGT1A3 and UGT2B7 were selected to elucidate the inhibition mechanism, and in silico docking showed that hydrogen bonds and hydrophobic interactions mainly contributed to the strong binding of everolimus toward the activity cavity of UGT1A3 and UGT2B7. Inhibition kinetic-type analysis using Lineweaver-Burk plot showed competitive inhibition toward all these UGT isoforms. The inhibition kinetic parameters (Ki) were calculated to be 2.3, 0.07 and 4.4 µM for the inhibition of everolimus toward UGT1A1, UGT-1A3 and UGT-2B7, respectively. 3. In vitro-in vivo extrapolation (IVIVE) showed that [I]/Ki value was calculated to be 0.004, 0.14 and 0.002 for UGT1A1, UGT-1A3 and UGT-2B7, respectively. Therefore, high DDI potential existed between everolimus and clinical drugs mainly undergoing UGT1A3-catalyzed glucuronidation.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Everolimus/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , Glucuronosiltransferasa/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Simulación del Acoplamiento Molecular , Isoformas de Proteínas/metabolismo
3.
Xenobiotica ; 48(3): 250-257, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28285550

RESUMEN

1. UDP-glucuronosyltransferases (UGTs) are important drug-metabolizing enzymes (DMEs) catalyzing the glucuronidation elimination of various xenobiotics and endogenous substances. Endogenous substances are important regulators for the activity of various UGT isoforms. Triiodothyronine (T3) and thyroxine (T4) are important thyroid hormones essential for normal cellular differentiation and growth. The present study aims to elucidate the inhibition behavior of T3 and T4 on the activity of UGT isoforms. 2. In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was used to screen the inhibition potential of T3 and T4 on the activity of various UGT isoforms. Initial screening results showed that T4 exerted stronger inhibition potential than T3 on the activity of various UGT isoforms at 100 µM. Inhibition kinetics was determined for the inhibition of T4 on the representative UGT isoforms, including UGT1A1, -1A3, -1A7, -1A8, -1A10 and -2B7. The results showed that T4 competitively inhibited the activity of UGT1A1, -1A3, -1A7, 1A10 and -2B7, and noncompetitively inhibited the activity of UGT1A8. The inhibition kinetic parameters were calculated to be 1.5, 2.4, 11, 9.6, 4.8 and 3.0 µM for UGT1A1, -1A3, -1A7, -1A8, -1A10 and -2B7, respectively. In silico docking method was employed to demonstrate why T4 exerted stronger inhibition than T3 towards UGT1A1. Stronger hydrogen bonds and hydrophobic interaction between T4 and activity cavity of UGT1A1 than T3 contributed to stronger inhibition of T4 towards UGT1A1. 3. In conclusion, more clinical monitoring should be given for the patients with the elevation of T4 level due to stronger inhibition of UGT isoforms-catalyzed metabolism of drugs or endogenous substances by T4.


Asunto(s)
Glucuronosiltransferasa/antagonistas & inhibidores , Tiroxina/farmacología , Triyodotironina/farmacología , Inhibidores Enzimáticos/farmacología , Glucuronosiltransferasa/química , Glucuronosiltransferasa/metabolismo , Humanos , Enlace de Hidrógeno , Himecromona/metabolismo , Simulación del Acoplamiento Molecular , Tiroxina/química , Triyodotironina/química
4.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3170-3182, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28844958

RESUMEN

Growth arrest and DNA damage-inducible 45 α (Gadd45α) is a stress-inducible protein that plays an important role in cell survival/death and DNA repair, but its contribution to the development of nonalcoholic steatohepatitis (NASH) has not been investigated. C57BL/6 Gadd45a-null and wild-type (WT) mice were treated with a methionine and choline-deficient diet (MCD) for eight weeks and phenotypic changes examined. Gadd45a-null mice had more severe hepatic inflammation and fibrosis, higher levels of mRNAs encoding pro-inflammatory, pro-fibrotic, and pro-apoptotic proteins, and greater oxidative and endoplasmic reticulum (ER) stress compared with WT mice. Indeed, Gadd45a mRNA was induced in response to ER stress in primary hepatocytes. Lipidomic analysis of NASH livers demonstrated decreased triacylglycerol (TG) in MCD-treated Gadd45a-null mice, which was associated with increased mRNAs encoding phospholipase D (Pld1/2), phosphatidic acid phosphatase type 2A, and choline/ethanolamine phosphotransferase 1 (Cept1), involved in the phosphatidylcholine-phosphatidic acid-diacylglycerol cycle, and decreased mRNAs encoding fatty acid (FA)-binding protein 1 (Fabp1) and FA transport protein 5. Treatment of cultured primary hepatocytes with tumor necrosis factor α, transforming growth factor ß, and hydrogen peroxide led to the corresponding induction of Fabp1, Pld1/2, and Cept1 mRNAs. Collectively, Gadd45α plays protective roles against MCD-induced NASH likely due to attenuating cellular stress and ensuing inflammatory signaling. These results also suggest an interconnection between hepatocyte injury, inflammation and disrupted glycerophospholipid/FA metabolism that yields a possible mechanism for decreased TG accumulation with NASH progression (i.e., "burned-out" NASH).


Asunto(s)
Proteínas de Ciclo Celular/deficiencia , Deficiencia de Colina/metabolismo , Glicerofosfolípidos/metabolismo , Metionina/deficiencia , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Proteínas Nucleares/deficiencia , Animales , Proteínas de Ciclo Celular/metabolismo , Dieta , Estrés del Retículo Endoplásmico/fisiología , Proteínas de Transporte de Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatasa/metabolismo , Fosfolipasa D/metabolismo , ARN Mensajero/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Triglicéridos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Xenobiotica ; 47(5): 376-381, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27359323

RESUMEN

1. The exposed level of vitamin A in plasma might be exceeded due to the both inadvertent and clinical utilization. The adverse effects of vitamin A have been frequently reported, however, the mechanism remains unclear. The inhibition of vitamin A on the activity of UDP-glucuronosyltransferases (UGTs) was determined using in vitro incubation system to explain the adverse effects of vitamin A from a new perspective. 2. UGT supersomes catalyzed glucuronidation of 4-methylumbelliferone (4-MU), trifluoperazine (TFP), and cotinine was used as the probe reaction to evaluate the inhibition of vitamin A toward UGT isoforms, and 100 µM of vitamin A significantly inhibited the activity of all the tested UGT isoforms. Vitamin A exerted competitive inhibition on the activity of UGT1A1, 2B4, 2B7, and 2B15, and the inhibition kinetic parameters (Ki) were calculated to be 31.1, 16.8, 2.2, and 11.6 µM for UGT1A1, 2B4, 2B7, and 2B15. In silico docking method was used to try to elucidate the inhibition mechanism of vitamin A toward UGT2B7. The results showed the significant contribution of hydrogen bonds and hydrophobic interaction on the UGT2B7 inhibition by vitamin A. 3. The present study provides a new perspective for the adverse effects of vitamin A through reporting the inhibition of vitamin A on the activity of important phase II drug-metabolizing enzymes UGTs, which benefits our deep understanding of mechanism of vitamin A's adverse effects when high exposure of vitamin A occurs.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glucuronosiltransferasa/metabolismo , Vitamina A/farmacología , Inhibidores Enzimáticos/metabolismo , Himecromona , Cinética , Vitamina A/metabolismo
6.
Arch Toxicol ; 91(5): 2235-2244, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27853831

RESUMEN

Alpha-naphthyl isothiocyanate (ANIT)-induced liver damage is regarded as a useful model to study drug-induced cholestatic hepatitis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry (UPLC-ESI-QTOF MS)-based metabolomics revealed clues to the mechanism of ANIT-induced liver injury, which facilitates the elucidation of drug-induced liver toxicity. 1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC 18:0) and 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC 18:1) were significantly increased in serum from ANIT-treated mice, and this increase resulted from altered expression of genes encoding the lipid metabolism enzymes Chka and Scd1. ANIT also increased NF-κB/IL-6/STAT3 signaling, and in vitro luciferase reporter gene assays revealed that LPC 18:0 and LPC 18:1 can activate NF-κB in a concentration-dependent manner. Activation of PPARα through feeding mice a Wy-14,643-containing diet (0.1%) reduced ANIT-induced liver injury, as indicated by lowered ALT and AST levels, and liver histology. In conclusion, the present study demonstrated a role for the lipid-regulated NF-κB/IL-6/STAT3 axis in ANIT-induced hepatotoxicity, and that PPARα may be a potential therapeutic target for the prevention of drug-induced cholestatic liver injury.


Asunto(s)
1-Naftilisotiocianato/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , PPAR alfa/genética , PPAR alfa/metabolismo , Pirimidinas/farmacología
7.
Molecules ; 22(6)2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28621744

RESUMEN

Mangiferin (MGF), the predominant constituent of extracts of the mango plant Mangifera Indica L., has been investigated extensively because of its remarkable pharmacological effects. In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was used to investigate the inhibition of mangiferin and aglycone norathyriol towards various isoforms of UGTs in our study, which evaluated the inhibitory capacity of MGF and its aglycone norathyriol (NTR) towards UDP-glucuronosyltransferase (UGT) isoforms. Initial screening experiment showed that deglycosylation of MGF into NTR strongly increased the inhibitory effects towards almost all the tested UGT isoforms at a concentration of 100 µM. Kinetic experiments were performed to further characterize the inhibition of UGT1A3, UGT1A7 and UGT1A9 by NTR. NTR competitively inhibited UGT1A3, UGT1A7 and UGT1A9, with an IC50 value of 8.2, 4.4, and 12.3 µM, and a Ki value of 1.6, 2.0, and 2.8 µM, respectively. In silico docking showed that only NTR could dock into the activity cavity of UGT1A3, UGT1A7 and UGT1A9. The binding free energy of NTR to UGT1A3, 1A7, 1A9 were -7.4, -7.9 and -4.0 kcal/mol, respectively. Based on the inhibition evaluation standard ([I]/Ki < 0.1, low possibility; 0.1 < [I]/Ki < 1, medium possibility; [I]/Ki > 1, high possibility), an in vivo herb-drug interaction between MGF/NTR and drugs mainly undergoing UGT1A3-, UGT1A7- or UGT1A9-catalyzed metabolism might occur when the plasma concentration of NTR is above 1.6, 2.0 and 2.8 µM, respectively.


Asunto(s)
Glucuronosiltransferasa/metabolismo , Isoenzimas/metabolismo , Xantonas/química , Glucuronosiltransferasa/antagonistas & inhibidores , Interacciones de Hierba-Droga , Isoenzimas/antagonistas & inhibidores , Xantenos/química
8.
Yao Xue Xue Bao ; 52(1): 66-70, 2017 01.
Artículo en Zh | MEDLINE | ID: mdl-29911771

RESUMEN

Praeruptorin C (PC), D (PD) and E (PE) are important compounds extracted from Peucedanum praeruptorum DUNN and have been reported to exert multiple pharmacological activities. The present study is purposed to determine the inhibition of PC, PD and PE on the activity of important phase I metabolic enzymes ­ carboxylesterases (CES). In vitro human liver microsomes (HLM) incubation system was used to determine the inhibition potential of PC, PD and PE on the activity of CES1 and CES2. Inhibition behaviour was determined, and in vitro-in vivo extrapolation was performed by using the combination of in vitro inhibition kinetic parameter (K(I)) and in vivo exposure level of PD. PD exhibited the strongest inhibition on the activity of CES1, with 81.7% activity inhibited by 100 µmol·L(-1) of PD. PD noncompetitively inhibited the activity of CES1 with the K(I) to be 122.2 µmol·L(-1), indicating inhibition potential of PD towards CES1 in vivo. Therefore, closely monitoring the endogenous metabolic disorders caused by PD and interaction between PD and drugs mainly undergoing CES1-catalyzed metabolism is very necessary.


Asunto(s)
Carboxilesterasa/antagonistas & inhibidores , Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Cumarinas/farmacología , Apiaceae/química , Humanos , Cinética , Microsomas Hepáticos
9.
Pharm Biol ; 55(1): 1703-1709, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28466663

RESUMEN

CONTENTS: Danshen is a popular herb employed to treat cardiovascular and cerebrovascular diseases worldwide. Danshen-drug interaction has not been well studied. OBJECTIVE: The inhibitory effects of four major tanshinones (tanshinone I, tanshinone IIA, cryptotanshinone, and dihydrotanshinone I) on UDP-glucuronosyltransferases (UGTs) isoforms were determined to better understand the mechanism of danshen-prescription drugs interaction. MATERIALS AND METHODS: In vitro recombinant UGTs-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed. Tanshinones (100 µM) was used to perform the initial screening of inhibition capability. High-performance liquid chromatography (HPLC) was used to separate 4-MU and its glucuronide. In vitro-in vivo extrapolation (IV-IVE) was employed to predict in vivo inhibition situation. RESULTS: Cryptotanshinone inhibited UGT1A7 and UGT1A9 with IC50 values of 1.91 ± 0.27 and 0.27 ± 0.03 µM, respectively. Dihydrotanshinone I inhibited UGT1A9-catalyzed 4-MU glucuronidation reaction with the IC50 value of 0.72 ± 0.04 µM. The inhibition of cryptotanshinone towards UGT1A7 and UGT1A9 was best fit to competitive inhibition type, and UGT1A9 was non-competitively inhibited by dihydrotanshinone I. Using in vitro inhibition kinetic parameters (Ki) and in vivo maximum plasma concentration (Cmax) of cryptotanshinone and dihydrotanshinone I, the change of area-under-the-concentration-time curve (AUC) was predicted to be 0.4-4.2%, 3.7-56.3%, and 0.6-6.4% induced by cryptotanshinone and dihydrotanshinone inhibition towards UGT1A7 and UGT1A9, respectively. DISCUSSION AND CONCLUSION: The inhibitory effects of tanshinones towards important UGT isoforms were evaluated in the present study, which provide helpful information for exploring the mechanism of danshen-clinical drugs interaction.


Asunto(s)
Abietanos/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Fenantrenos/farmacología , Salvia miltiorrhiza/química , Abietanos/administración & dosificación , Abietanos/farmacocinética , Animales , Área Bajo la Curva , Cromatografía Líquida de Alta Presión , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Interacciones de Hierba-Droga , Concentración 50 Inhibidora , Isoenzimas , Fenantrenos/administración & dosificación , Fenantrenos/farmacocinética , Ratas
10.
Biochim Biophys Acta ; 1852(3): 473-81, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25533124

RESUMEN

SLC25A13 (citrin or aspartate-glutamate carrier 2) is located in the mitochondrial membrane in the liver and its genetic deficiency causes adult-onset type II citrullinemia (CTLN2). CTLN2 is one of the urea cycle disorders characterized by sudden-onset hyperammonemia due to reduced argininosuccinate synthase activity. This disorder is frequently accompanied with hepatosteatosis in the absence of obesity and ethanol consumption. However, the precise mechanism of steatogenesis remains unclear. The expression of genes associated with fatty acid (FA) and triglyceride (TG) metabolism was examined using liver samples obtained from 16 CTLN2 patients and compared with 7 healthy individuals. Although expression of hepatic genes associated with lipogenesis and TG hydrolysis was not changed, the mRNAs encoding enzymes/proteins involved in FA oxidation (carnitine palmitoyl-CoA transferase 1α, medium- and very-long-chain acyl-CoA dehydrogenases, and acyl-CoA oxidase 1), very-low-density lipoprotein secretion (microsomal TG transfer protein), and FA transport (CD36 and FA-binding protein 1), were markedly suppressed in CTLN2 patients. Serum concentrations of ketone bodies were also decreased in these patients, suggesting reduced mitochondrial ß-oxidation activity. Consistent with these findings, the expression of peroxisome proliferator-activated receptor α (PPARα), a master regulator of hepatic lipid metabolism, was significantly down-regulated. Hepatic PPARα expression was inversely correlated with severity of steatosis and circulating ammonia and citrulline levels. Additionally, phosphorylation of c-Jun-N-terminal kinase was enhanced in CTLN2 livers, which was likely associated with lower hepatic PPARα. Collectively, down-regulation of PPARα is associated with steatogenesis in CTLN2 patients. These findings provide a novel link between urea cycle disorder, lipid metabolism, and PPARα.


Asunto(s)
Citrulinemia/metabolismo , Regulación hacia Abajo , Hígado Graso/metabolismo , Metabolismo de los Lípidos , Mitocondrias Hepáticas/metabolismo , PPAR alfa/biosíntesis , Adulto , Citrulinemia/complicaciones , Citrulinemia/genética , Citrulinemia/patología , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Hígado Graso/etiología , Hígado Graso/genética , Hígado Graso/patología , Femenino , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Cuerpos Cetónicos/genética , Cuerpos Cetónicos/metabolismo , Masculino , Persona de Mediana Edad , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/patología , Proteínas de Transporte de Membrana Mitocondrial , PPAR alfa/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Triglicéridos/genética , Triglicéridos/metabolismo
11.
Toxicol Appl Pharmacol ; 301: 42-9, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27089846

RESUMEN

Tolcapone and entacapone are two potent catechol-O-methyltransferase (COMT) inhibitors with a similar skeleton and displaying similar pharmacological activities. However, entacapone is a very safe drug used widely in the treatment of Parkinson's disease, while tolcapone is only in limited use for Parkinson's patients and needs careful monitoring of hepatic functions due to hepatotoxicity. This study aims to investigate and compare the inhibitory effects of entacapone and tolcapone on human UDP-glucosyltransferases (UGTs), as well as to evaluate the potential risks from the view of drug-drug interactions (DDI). The results demonstrated that both tolcapone and entacapone exhibited inhibitory effects on UGT1A1, UGT1A7, UGT1A9 and UGT1A10. In contrast to entacapone, tolcapone exhibited more potent inhibitory effects on UGT1A1, UGT1A7, and UGT1A10, while their inhibitory potentials against UGT1A9 were comparable. It is noteworthy that the inhibition constants (Ki) of tolcapone and entacapone against bilirubin-O-glucuronidation in human liver microsomes (HLM) are determined as 0.68µM and 30.82µM, respectively, which means that the inhibition potency of tolcapone on UGT1A1 mediated bilirubin-O-glucuronidation in HLM is much higher than that of entacapone. Furthermore, the potential risks of tolcapone or entacapone via inhibition of human UGT1A1 were quantitatively predicted by the ratio of the areas under the plasma drug concentration-time curve (AUC). The results indicate that tolcapone may result in significant increase in AUC of bilirubin or the drugs primarily metabolized by UGT1A1, while entacapone is unlikely to cause a significant DDI through inhibition of UGT1A1.


Asunto(s)
Antiparkinsonianos/farmacología , Benzofenonas/farmacología , Catecoles/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Nitrilos/farmacología , Nitrofenoles/farmacología , Animales , Bilirrubina/metabolismo , Inhibidores de Catecol O-Metiltransferasa/farmacología , Línea Celular , Glucurónidos/metabolismo , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Humanos , Himecromona/farmacología , Insectos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Tolcapona , Trifluoperazina/farmacología
12.
Toxicol Appl Pharmacol ; 291: 21-7, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26706406

RESUMEN

Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showed that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4(+) naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression.


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Ácidos y Sales Biliares/biosíntesis , Camptotecina/análogos & derivados , Interleucina-10/antagonistas & inhibidores , Interleucina-10/biosíntesis , Animales , Camptotecina/toxicidad , Células Cultivadas , Regulación de la Expresión Génica , Irinotecán , Masculino , Ratones , Ratones Endogámicos C57BL
13.
Xenobiotica ; 46(6): 503-10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26560012

RESUMEN

1. Fructus psoraleae (FP) is the dried ripe seeds of Psoralea corylifolia L. (Fabaceae) widely used in Asia, and has been reported to exert important biochemical and pharmacological activities. The adverse effects of FP remain unclear. The present study aims to determine the inhibition of human carboxylesterase 1 (CES1) by FP's major ingredients, including neobavaisoflavone, corylifolinin, coryfolin, psoralidin, corylin and bavachinin. 2. The probe substrate of CES1 2-(2-benzoyl-3-methoxyphenyl) benzothiazole (BMBT) was derived from 2-(2-hydroxy-3-methoxyphenyl) benzothiazole (HMBT), and human liver microsomes (HLMs)-catalyzed BMBT metabolism was used to phenotype the activity of CES1. In silico docking method was employed to explain the inhibition mechanism. 3. All the tested compounds exerted strong inhibition towards the activity of CES1 in a concentration-dependent behavior. Furthermore, the inhibition kinetics was determined for the inhibition of neobavaisoflavone, corylifolinin, coryfolin, corylin and bavachinin towards CES1. Both Dixon and Lineweaver-Burk plots showed that neobavaisoflavone, corylifolinin, coryfolin and corylin noncompetitively inhibited the activity of CES1, and bavachinin competitively inhibited the activity of CES1. The inhibition kinetic parameters (Ki) were calculated to be 5.3, 9.4, 1.9, 0.7 and 0.5 µM for neobavaisoflavone, corylifolinin, coryfolin, corylin and bavachinin, respectively. In conclusion, the inhibition behavior of CES1 by the FP's constituents was given in this article, indicating the possible adverse effects of FP through the disrupting CES1-catalyzed metabolism of endogenous substances and xenobiotics.


Asunto(s)
Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Extractos Vegetales/farmacología , Psoralea/química , Fabaceae , Flavonoides/farmacología , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Simulación del Acoplamiento Molecular , Extractos Vegetales/química
14.
Phytother Res ; 30(7): 1189-96, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27145339

RESUMEN

Arctiin is the major pharmacological ingredient of Fructus Arctii, and arctigenin is the metabolite of arctiin formed via the catalysis of human intestinal bacteria. The present study aims to investigate the inhibition profile of arctiin and arctigenin on important phase II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs), indicating the possible herb-drug interaction. In vitro screening experiment showed that 100 µM of arctiin and arctigenin inhibited the activity of UGT1A3, 1A9, 2B7, and 2B15. Homology modeling-based in silico docking of arctiin and arctigenin into the activity cavity of UGT2B15 showed that hydrogen bonds and hydrophobic interactions contributed to the strong binding free energy of arctiin (-8.14 kcal/mol) and arctigenin (-8.43 kcal/mol) with UGT2B15. Inhibition kinetics study showed that arctiin and arctigenin exerted competitive and noncompetitive inhibition toward UGT2B15, respectively. The inhibition kinetic parameters (Ki ) were calculated to be 16.0 and 76.7 µM for the inhibition of UGT2B15 by arctiin and arctigenin, respectively. Based on the plasma concentration of arctiin and arctigenin after administration of 100 mg/kg of arctiin, the [I]/Ki values were calculated to be 0.3 and 0.007 for arctiin and arctigenin, respectively. Based on the inhibition evaluation standard ([I]/Ki < 0.1, low possibility; 0.1 < [I]/Ki < 1, medium possibility; [I]/Ki > 1, high possibility), arctiin might induce drug-drug interaction with medium possibility. Based on these results, clinical monitoring the utilization of Fructus Arctii is very important and necessary. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Furanos/farmacología , Glucósidos/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Lignanos/farmacología , Interacciones de Hierba-Droga , Humanos , Isoenzimas/antagonistas & inhibidores , Cinética
15.
Phytother Res ; 30(11): 1872-1878, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27534594

RESUMEN

Praeruptorin A (PA) and B (PB) are two important compounds isolated from Bai-hua Qian-hu and have been reported to exert multiple biochemical and pharmacological activities. The present study aims to determine the inhibition of PA and PB on the activity of important phase II drug-metabolizing enzymes uridine 5'-diphospho-glucuronosyltransferase (UGTs) isoforms. In vitro UGT incubation system was used to determine the inhibition potential of PA and PB on the activity of various UGT isoforms. In silico docking was performed to explain the inhibition difference between PA and PB towards the activity of UGT1A6. Inhibition behaviour was determined, and in vitro-in vivo extrapolation was performed by using the combination of in vitro inhibition kinetic parameter (Ki ) and in vivo exposure level of PA. Praeruptorin A (100 µM) exhibited the strongest inhibition on the activity of UGT1A6 and UGT2B7, with 97.8% and 90.1% activity inhibited by 100 µM of PA, respectively. In silico docking study indicates the significant contribution of hydrogen bond interaction towards the stronger inhibition of PA than PB towards UGT1A6. Praeruptorin A noncompetitively inhibited the activity of UGT1A6 and competitively inhibited the activity of UGT2B7. The inhibition kinetic parameter (Ki ) of PA towards UGT1A6 and UGT2B7 was calculated to be 1.2 and 3.3 µM, respectively. The [I]/Ki value was calculated to be 15.8 and 5.8 for the inhibition of PA on UGT1A6 and UGT2B7, indicating high inhibition potential of PA towards these two UGT isoforms in vivo. Therefore, closely monitoring the interaction between PA and drugs mainly undergoing UGT1A6 or UGT2B7-catalyzed metabolism is very necessary. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Cumarinas/química , Glucuronosiltransferasa/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Cumarinas/farmacología , Humanos
16.
Biochim Biophys Acta ; 1841(11): 1596-607, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25178843

RESUMEN

Methionine- and choline-deficient diet (MCD) is a model for nonalcoholic steatohepatitis (NASH) in rodents. However, the mechanism of NASH development by dietary methionine/choline deficiency remains undetermined. To elucidate the early metabolic changes associated with MCD-NASH, serum metabolomic analysis was performed using mice treated with MCD and control diet for 3 days and 1 week, revealing significant increases in oleic and linoleic acids after MCD treatment. These increases were correlated with reduced body weight and white adipose tissue (WAT) mass, increased phosphorylation of hormone-sensitive lipase, and up-regulation of genes encoding carboxylesterase 3 and ß2-adrenergic receptor in WAT, indicating accelerated lipolysis in adipocytes. The changes in serum fatty acids and WAT by MCD treatment were reversed by methionine supplementation, and similar alterations were detected in mice fed a methionine-deficient diet (MD), thus demonstrating that dietary methionine deficiency enhances lipolysis in WAT. MD treatment decreased glucose and increased fibroblast growth factor 21 in serum, thus exhibiting a similar metabolic phenotype as the fasting response. Comparison between MCD and choline-deficient diet (CD) treatments suggested that the addition of MD-induced metabolic alterations, such as WAT lipolysis, to CD-induced hepatic steatosis promotes liver injury. Collectively, these results demonstrate an important role for dietary methionine deficiency and WAT lipolysis in the development of MCD-NASH.

17.
Chirality ; 27(3): 189-93, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25502512

RESUMEN

UDP-glucuronosyltransferases (UGTs)-catalyzed glucuronidation conjugation reaction plays an important role in the elimination of many important clinical drugs and endogenous substances. The present study aims to investigate the enantioselective inhibition of carprofen towards UGT isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation mixture was used to screen the inhibition potential of (R)-carprofen and (S)-carprofen towards multiple UGT isoforms. The results showed that (S)-carprofen exhibited stronger inhibition potential than (R)-carprofen towards UGT2B7. However, no significant difference was observed for the inhibition of (R)-carprofen and (S)-carprofen towards other UGT isoforms. Furthermore, the inhibition kinetic behavior was compared for the inhibition of (S)-carprofen and (R)-carprofen towards UGT2B7. A Lineweaver-Burk plot showed that both (S)-carprofen and (R)-carprofen exhibited competitive inhibition towards UGT2B7-catalyzed 4-MU glucuronidation. The inhibition kinetic parameter (Ki ) was calculated to be 7.0 µM and 31.1 µM for (S)-carprofen and (R)-carprofen, respectively. Based on the standard for drug-drug interaction, the threshold for (S)-carprofen and (R)-carprofen to induce a drug-drug interaction is 0.7 µM and 3.1 µM, respectively. In conclusion, enantioselective inhibition of carprofen towards UDP-glucuronosyltransferase (UGT) 2B7 was demonstrated in the present study. Using the in vitro inhibition kinetic parameter, the concentration threshold of (S)-carprofen and (R)-carprofen to possibly induce the drug-drug interaction was obtained. Therefore, clinical monitoring of the plasma concentration of (S)-carprofen is more important than (R)-carprofen to avoid a possible drug-drug interaction between carprofen and the drugs mainly undergoing UGT2B7-catalyzed metabolism.


Asunto(s)
Carbazoles/farmacología , Inhibidores Enzimáticos/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Carbazoles/química , Interacciones Farmacológicas , Inhibidores Enzimáticos/química , Cinética , Estereoisomerismo
18.
Chirality ; 27(6): 359-63, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25903196

RESUMEN

Zaltoprofen (ZLT) is a nonsteroidal antiinflammation drug, and has been clinically employed to treat rheumatoid arthritis, osteoarthritis, and other chronic inflammatory pain conditions. The present study aims to investigate the chirality influence of zaltoprofen towards the inhibition potential towards UDP-glucuronosyltransferases (UGTs) isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation system was employed to investigate the inhibition of (R)-zaltoprofen and (S)-zaltoprofen towards UGT isoforms. The inhibition difference capability was observed for the inhibition of (R)-zaltoprofen and (S)-zaltoprofen towards UGT1A8 and UGT2B7, but not for other tested UGT isoforms. (R)-zaltoprofen exhibited noncompetitive inhibition towards UGT1A8 and competitive inhibition towards UGT2B7. The inhibition kinetic parameters were calculated to be 35.3 µM and 19.2 µM for UGT1A8 and UGT2B7. (R)-zaltoprofen and (S)-zaltoprofen exhibited a different inhibition type towards UGT1A7. Based on the reported maximum plasma concentration of (R)-zaltoprofen in vivo, a high drug-drug interaction between (R)-zaltoprofen and the drugs mainly undergoing UGT1A7, UGT1A8, and UGT2B7-catalyzed glucuronidation was indicated.


Asunto(s)
Benzopiranos/química , Benzopiranos/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Propionatos/química , Propionatos/farmacología , Unión Competitiva/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Cinética , Estructura Molecular , Isoformas de Proteínas , Estereoisomerismo
19.
Chirality ; 27(12): 936-43, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26425918

RESUMEN

Rivaroxaban is an oral direct factor Xa (FXa) inhibitor clinically used to prevent and treat thromboembolic disorders. Drug-drug interaction (DDI) exist for rivaroxaban and the inhibitors of CYP3A4/5. This study aims to investigate the inhibition of rivaroxaban and its derivatives with a chiral center towards UDP-glucuronosyltransferases (UGTs). Chemical synthesis was performed to obtain rivaroxaban derivatives with different chiral centers. UGTs supersomes-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was employed to evaluate the inhibition potential towards various UGT isoforms. A significant influence of rivaroxaban derivatives towards UGT1A3 was observed. Chiral centers produce different effects towards the effect of four pairs of rivaroxaban derivatives towards UGT1A3 activity, with stronger inhibition potential of S1 than R1, but stronger inhibition capability of R2, R3, R4 than S2, S3, and S4. Competitive inhibition of R3 and R4 towards UGT1A3 was demonstrated by Dixon and Lineweaver-Burk plots. In conclusion, the significant influence of rivaroxaban derivatives towards UGT1A3's activity was demonstrated in the present study. The chirality centers highly affected the inhibition behavior of rivaroxaban derivatives towards UGT1A3.


Asunto(s)
Inhibidores del Factor Xa/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Isoenzimas/antagonistas & inhibidores , Rivaroxabán/farmacología , Inhibidores del Factor Xa/química , Glucuronosiltransferasa/química , Isoenzimas/química , Rivaroxabán/química , Estereoisomerismo
20.
Xenobiotica ; 45(3): 197-206, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25259654

RESUMEN

1.Endogenous compounds have been reported to be the regulators of UDP-glucuronosyltransferases (UGTs) isoforms. This study aims to investigate the regulatory effects of the activity of UGT isoforms by two important lipid components phosphatidylcholine (PC) and lysophosphatidylcholines (LPC) using in vitro incubation system. 2.UGTs supersomes-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used as the probe reaction to evaluate the inhibition of compounds towards UGT isoforms except UGT1A4, and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation reaction was utilized to phenotype the activity of UGT1A4. 3.About 50 µM of LPC15:0, LPC16:0, LPC17:0, LPC18:0, LPC18:1 and PC16:0, 2:0 exhibited inhibition towards more than 90% activity of UGT isoforms, and other LPC and PC components showed negligible inhibitory potential towards all the UGT isoforms. UGT1A6 and UGT1A8 were identified to be the most sensitive UGT isoforms susceptible for the inhibition by LPC15:0, LPC16:0, LPC17:0, LPC18:0, LPC18:1 and PC16:0, 2:0, indicating the strong influence of these LPC and PC components towards UGT1A6 and UGT1A8-catalyzed metabolic reaction when the concentrations of these components increased.


Asunto(s)
Glucuronosiltransferasa/metabolismo , Lisofosfatidilcolinas/metabolismo , Fosfatidilcolinas/metabolismo , Biocatálisis , Dominio Catalítico , Glucurónidos/metabolismo , Humanos , Cinética , Lisofosfatidilcolinas/química , Simulación del Acoplamiento Molecular , Fosfatidilcolinas/química , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA