Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gene Ther ; 29(12): 680-690, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34108628

RESUMEN

Nowadays, nano-compartments are considered as an effective drug delivery system (DDS) for cancer therapy. Targeted delivery of therapeutic agents is an advantageous approach by which cancer cells can be targeted without harming normal cells, and eliminates the negative effects of conventional therapies such as chemotherapy. In this research, a novel zinc-based nanoscale metal-organic framework (Zn-NMOF) coated with folic acid (FA) functionalized chitosan (CS) has been constructed and applied as efficient delivery of LNA (locked nucleic acid)-antisense miR-224 to colon cancer cell lines. LNA-antisense miR-224 as a therapeutic sequence was able to considerably block highly expressed miR-224 and downregulated cancer cell growth. The prepared nano-complex was characterized by analytical devices such as FT-IR, UV-Vis spectrophotometry, DLS, TEM, and XRD. The size range of NMOF-CS-FA-LNA-antisense miR-224 (MCFL224) nano-complex was obtained nearly at 200 nm. The entrapment efficiency of LNA-antisense miR-224 was calculated 72 ± 5% and a significant release profile of LNA-antisense miR-224 was observed at first 6 h (about 50%). Then, in vitro assays were implemented on HCT116 (folic acid receptor-positive colon cancer cell line) and CRL1831 (normal colon cell line) to evaluate the therapeutic efficiency of the MCFL224 nano-complex. In these investigations, decreased cell viability (14.22 ± 0.3% after 72 h treatment), increased apoptotic and autophagy-related genes expression level (BECLIN1: 34-folds, BAX: 36-folds, mTORC1: 10-folds, and Caspase-9: 9-folds more than control), higher cell cycle arrest in sub-G1 phase (19.53% of cells in sub-G1 phase), and more apoptosis analyses (late apoptosis: 67.7%) were evaluated in colon cancer cells treated with MCFL224 nano-complex. Results remarkably indicate the inhibited growth of colon cancer cells and induced cell apoptosis which suggests MCFL224 as a promising nanocomposite for colon cancer therapy.


Asunto(s)
Quitosano , Neoplasias del Colon , Estructuras Metalorgánicas , MicroARNs , Nanocompuestos , Humanos , Espectroscopía Infrarroja por Transformada de Fourier , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Ácido Fólico , MicroARNs/genética , Zinc , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA