Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990068

RESUMEN

Lipids represent the most abundant molecular type in the brain with a fat content of approximately 60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid and endocannabinoids finely regulate both synaptic receptors and ion channels that insure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.

2.
J Med Virol ; 96(2): e29462, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38363015

RESUMEN

Mutations associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resistance to antiprotease nirmatrelvir were reported. We aimed to detect them in SARS-CoV-2 genomes and quasispecies retrieved in our institute before drug availability in January 2022 and to analyze the impact of mutations on protease (3CLpro) structure. We sought for 38 3CLpro nirmatrelvir resistance mutations in a set of 62 673 SARS-CoV-2 genomes obtained in our institute from respiratory samples collected between 2020 and 2023 and for these mutations in SARS-CoV-2 quasispecies for 90 samples collected in 2020, using Python. SARS-CoV-2 protease with major mutation E166V was generated with Swiss Pdb Viewer and Molegro Molecular Viewer. We detected 22 (58%) of the resistance-associated mutations in 417 (0.67%) of the genomes analyzed; 325 (78%) of these genomes had been obtained from samples collected in 2020-2021. APOBEC signatures were found for 12/22 mutations. We also detected among viral quasispecies from 90 samples some minority reads harboring any of 15 nirmatrelvir resistance mutations, including E166V. Also, we predicted that E166V has a very limited effect on 3CLpro structure but may prevent drug attachment. Thus, we evidenced that mutations associated with nirmatrelvir resistance pre-existed in SARS-CoV-2 before drug availability. These findings further warrant SARS-CoV-2 genomic surveillance and SARS-CoV-2 quasispecies characterization.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Endopeptidasas , Péptido Hidrolasas , Lactamas , Leucina , Mutación , Nitrilos , Antivirales/farmacología
3.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39201269

RESUMEN

The synapse is a piece of information transfer machinery replacing the electrical conduction of nerve impulses at the end of the neuron. Like many biological mechanisms, its functioning is heavily affected by time constraints. The solution selected by evolution is based on chemical communication that, in theory, cannot compete with the speed of nerve conduction. Nevertheless, biochemical and biophysical compensation mechanisms mitigate this intrinsic weakness: (i) through the high concentrations of neurotransmitters inside the synaptic vesicles; (ii) through the concentration of neurotransmitter receptors in lipid rafts, which are signaling platforms; indeed, the presence of raft lipids, such as gangliosides and cholesterol, allows a fine tuning of synaptic receptors by these lipids; (iii) through the negative electrical charges of the gangliosides, which generate an attractive (for cationic neurotransmitters, such as serotonin) or repulsive (for anionic neurotransmitters, such as glutamate) electric field. This electric field controls the flow of glutamate in the tripartite synapse involving pre- and post-synaptic neurons and the astrocyte. Changes in the expression of brain gangliosides can disrupt the functioning of the glutamatergic synapse, causing fatal diseases, such as Rett syndrome. In this review, we propose an in-depth analysis of the role of gangliosides in the glutamatergic synapse, highlighting the primordial and generally overlooked role played by the electric field of synaptic gangliosides.


Asunto(s)
Encéfalo , Gangliósidos , Ácido Glutámico , Electricidad Estática , Sinapsis , Gangliósidos/metabolismo , Gangliósidos/química , Humanos , Sinapsis/metabolismo , Animales , Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Neurotransmisores/metabolismo , Neuronas/metabolismo , Transmisión Sináptica
4.
J Med Virol ; 95(10): e29146, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37800455

RESUMEN

Severe acute respiratory syndrome coronavirus 2 XBB.1.5 is the first recombinant lineage to predominate at the country and global scales. Very interestingly, like the Marseille-4B subvariant (or B.1.160) and the pandemic variant B.1.1.7 (or Alpha) previously, it has its ORF8 gene inactivated by a stop codon. We aimed here to study the distribution of stop codons in ORF8 of XBB.1.5 and non-XBB.1.5 genomes. We identified that a stop codon was present at 89 (74%) ORF8 codons in ≥1 of 15 222 404 genomes available in GISAID. The mean proportion of genomes with a stop codon per codon was 0.11% (range, 0%-7.8%). In addition, a stop codon was detected at 15 (12%) codons in at least 1000 genomes. These 15 codons are notably located on seven stem-loop hairpin regions and in the signal peptide region for the case of the XBB.1.5 lineage (codon 8). Thus, it is very likely that stop codons in ORF8 gene contributed on at least three occasions and independently during the pandemic to the evolutionary success of a lineage that became transiently predominant. Such association of gene loss with evolutionary success, which suits the recently described Mistigri rule, is an important biological phenomenon very unknown in virology while largely described in cellular organisms.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Codón de Terminación , COVID-19/epidemiología , Filogenia
5.
J Med Virol ; 95(10): e29124, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37811585

RESUMEN

The on-going emergence of the Omicron BA.2.86 variant is one of the major events in SARS-CoV-2 genetic evolution that remain enigmatic regarding the overall virus mutation rate, together with the emergence of the initial Omicron variant, BA.1. Indeed, the genomes of the Omicron BA.2.86 lineage, an offspring of the second major Omicron subvariant, BA.2, harbor 39 additional mutations in the spike compared to this ancestor. Here we comment on the phylogeny of BA.2.86, on the positions, and frequencies in other SARS-CoV-2, of mutations in its spike, and on the structural model of this protein that concentrates most of BA.2.86 additional mutations.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Familia , Evolución Molecular , Glicoproteína de la Espiga del Coronavirus/genética
6.
J Med Virol ; 95(11): e29209, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37937701

RESUMEN

The tremendous majority of RNA genomes from pathogenic viruses analyzed and deposited in databases are consensus or "democratic" genomes. They represent the genomes most frequently found in the clinical samples of patients but do not account for the huge genetic diversity of coexisting genomes, which is better described as quasispecies. A viral quasispecies is defined as the dynamic distribution of nonidentical but closely related mutants, variants, recombinant, or reassortant viral genomes. Viral quasispecies have collective behavior and dynamics and are the subject of internal interactions that comprise interference, complementation, or cooperation. In the setting of SARS-CoV-2 infection, intrahost SARS-CoV-2 genetic diversity was recently notably reported for immunocompromised, chronically infected patients, for patients treated with monoclonal antibodies targeting the viral spike protein, and for different body compartments of a single patient. A question that deserves attention is whether such diversity is generated postinfection from a clonal genome in response to selection pressure or is already present at the time of infection as a quasispecies. In the present review, we summarize the data supporting that hosts are infected by a "wild bunch" of viruses rather than by multiple virions sharing the same genome. Each virion in the "wild bunch" may have different virulence and tissue tropisms. As the number of viruses replicated during host infections is huge, a viral quasispecies at any time of infection is wide and is also influenced by host-specific selection pressure after infection, which accounts for the difficulty in deciphering and predicting the appearance of more fit variants and the evolution of epidemics of novel RNA viruses.


Asunto(s)
COVID-19 , Virus ARN , Virus , Humanos , Cuasiespecies , Virus/genética , Virus ARN/genética , COVID-19/genética , Genoma Viral , Proteínas Virales/genética
7.
J Med Virol ; 95(1): e28102, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36031728

RESUMEN

The nature and dynamics of mutations associated with the emergence, spread, and vanishing of SARS-CoV-2 variants causing successive waves are complex. We determined the kinetics of the most common French variant ("Marseille-4") for 10 months since its onset in July 2020. Here, we analyzed and classified into subvariants and lineages 7453 genomes obtained by next-generation sequencing. We identified two subvariants, Marseille-4A, which contains 22 different lineages of at least 50 genomes, and Marseille-4B. Their average lifetime was 4.1 ± 1.4 months, during which 4.1 ± 2.6 mutations accumulated. Growth rate was 0.079 ± 0.045, varying from 0.010 to 0.173. Most of the lineages exhibited a bell-shaped distribution. Several beneficial mutations at unpredicted sites initiated a new outbreak, while the accumulation of other mutations resulted in more viral heterogenicity, increased diversity and vanishing of the lineages. Marseille-4B emerged when the other Marseille-4 lineages vanished. Its ORF8 gene was knocked out by a stop codon, as reported in SARS-CoV-2 of mink and in the Alpha variant. This subvariant was associated with increased hospitalization and death rates, suggesting that ORF8 is a nonvirulence gene. We speculate that the observed heterogenicity of a lineage may predict the end of the outbreak.


Asunto(s)
COVID-19 , Epidemias , Virus ARN , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Filogenia
8.
Cell Mol Life Sci ; 79(9): 496, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36006520

RESUMEN

Botulinum neurotoxin serotype B (BoNT/B) uses two separate protein and polysialoglycolipid-binding pockets to interact with synaptotagmin 1/2 and gangliosides. However, an integrated model of BoNT/B bound to its neuronal receptors in a native membrane topology is still lacking. Using a panel of in silico and experimental approaches, we present here a new model for BoNT/B binding to neuronal membranes, in which the toxin binds to a preassembled synaptotagmin-ganglioside GT1b complex and a free ganglioside allowing a lipid-binding loop of BoNT/B to interact with the glycone part of the synaptotagmin-associated GT1b. Furthermore, our data provide molecular support for the decrease in BoNT/B sensitivity in Felidae that harbor the natural variant synaptotagmin2-N59Q. These results reveal multiple interactions of BoNT/B with gangliosides and support a novel paradigm in which a toxin recognizes a protein/ganglioside complex.


Asunto(s)
Gangliósidos , Sinaptotagmina II , Sitios de Unión , Gangliósidos/química , Gangliósidos/metabolismo , Neuronas/metabolismo , Unión Proteica , Sinaptotagmina II/química , Sinaptotagmina II/genética , Sinaptotagmina II/metabolismo , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
9.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768244

RESUMEN

Although very different, in terms of their genomic organization, their enzymatic proteins, and their structural proteins, HIV and SARS-CoV-2 have an extraordinary evolutionary potential in common. Faced with various selection pressures that may be generated by treatments or immune responses, these RNA viruses demonstrate very high adaptive capacities, which result in the continuous emergence of variants and quasi-species. In this retrospective analysis of viral proteins, ensuring the adhesion of these viruses to the plasma membrane of host cells, we highlight many common points that suggest the convergent mechanisms of evolution. HIV and SARS-CoV-2 first recognize a lipid raft microdomain that acts as a landing strip for viral particles on the host cell surface. In the case of mucosal cells, which are the primary targets of both viruses, these microdomains are enriched in anionic glycolipids (gangliosides) forming a global electronegative field. Both viruses use lipid rafts to surf on the cell surface in search of a protein receptor able to trigger the fusion process. This implies that viral envelope proteins are both geometrically and electrically compatible to the biomolecules they select to invade host cells. In the present study, we identify the surface electrostatic potential as a critical parameter controlling the convergent evolution dynamics of HIV-1 and SARS-CoV-2 surface envelope proteins, and we discuss the impact of this parameter on the phenotypic properties of both viruses. The virological data accumulated since the emergence of HIV in the early 1980s should help us to face present and future virus pandemics.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , SARS-CoV-2 , COVID-19/metabolismo , Estudios Retrospectivos , Proteínas Virales/metabolismo , Receptores de Superficie Celular/metabolismo , Antígenos Virales/metabolismo , Infecciones por VIH/metabolismo , Microdominios de Membrana/metabolismo , Glicoproteínas/metabolismo
10.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675271

RESUMEN

A broad range of data identify Ca2+-permeable amyloid pores as the most neurotoxic species of Alzheimer's ß-amyloid peptide (Aß1-42). Following the failures of clinical trials targeting amyloid plaques by immunotherapy, a consensus is gradually emerging to change the paradigm, the strategy, and the target to cure Alzheimer's disease. In this context, the therapeutic peptide AmyP53 was designed to prevent amyloid pore formation driven by lipid raft microdomains of the plasma membrane. Here, we show that AmyP53 outcompetes Aß1-42 binding to lipid rafts through a unique mode of interaction with gangliosides. Using a combination of cellular, physicochemical, and in silico approaches, we unraveled the mechanism of action of AmyP53 at the atomic, molecular, and cellular levels. Molecular dynamics simulations (MDS) indicated that AmyP53 rapidly adapts its conformation to gangliosides for an optimal interaction at the periphery of a lipid raft, where amyloid pore formation occurs. Hence, we define it as an adaptive peptide. Our results describe for the first time the kinetics of AmyP53 interaction with lipid raft gangliosides at the atomic level. Physicochemical studies and in silico simulations indicated that Aß1-42 cannot interact with lipid rafts in presence of AmyP53. These data demonstrated that AmyP53 prevents amyloid pore formation and cellular Ca2+ entry by competitive inhibition of Aß1-42 binding to lipid raft gangliosides. The molecular details of AmyP53 action revealed an unprecedent mechanism of interaction with lipid rafts, offering innovative therapeutic opportunities for lipid raft and ganglioside-associated diseases, including Alzheimer's, Parkinson's, and related proteinopathies.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Gangliósidos/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Microdominios de Membrana/metabolismo
11.
J Neurosci ; 41(46): 9521-9538, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34620719

RESUMEN

KCNQ-Kv7 channels are found at the axon initial segment of pyramidal neurons, where they control cell firing and membrane potential. In oriens lacunosum moleculare (O-LM) interneurons, these channels are mainly expressed in the dendrites, suggesting a peculiar function of Kv7 channels in these neurons. Here, we show that Kv7 channel activity is upregulated following induction of presynaptic long-term synaptic depression (LTD) in O-LM interneurons from rats of both sex, thus resulting in a synergistic long-term depression of intrinsic excitability (LTD-IE). Both LTD and LTD-IE involve endocannabinoid (eCB) biosynthesis for induction. However, although LTD is dependent on cannabinoid type 1 receptors, LTD-IE is not. Molecular modeling shows a strong interaction of eCBs with Kv7.2/3 channel, suggesting a persistent action of these lipids on Kv7 channel activity. Our data thus unveil a major role for eCB synthesis in triggering both synaptic and intrinsic depression in O-LM interneurons.SIGNIFICANCE STATEMENT In principal cells, Kv7 channels are essentially located at the axon initial segment. In contrast, in O-LM interneurons, Kv7 channels are highly expressed in the dendrites, suggesting a singular role of these channels in O-LM cell function. Here, we show that LTD of excitatory inputs in O-LM interneurons is associated with an upregulation of Kv7 channels, thus resulting in a synergistic LTD of LTD-IE. Both forms of plasticity are mediated by the biosynthesis of eCBs. Stimulation of CB1 receptors induces LTD, whereas the direct interaction of eCBs with Kv7 channels induces LTD-IE. Our results thus provide a previously unexpected involvement of eCBs in long-lasting plasticity of intrinsic excitability in GABAergic interneurons.


Asunto(s)
Endocannabinoides/metabolismo , Interneuronas/metabolismo , Canales de Potasio KCNQ/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Animales , Femenino , Hipocampo/metabolismo , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
12.
J Med Virol ; 94(5): 2019-2025, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34997962

RESUMEN

The recently emerging SARS-CoV-2 variant omicron displays an unusual association of 30 mutations, 3 deletions, and 1 insertion. To analyze the impact of this atypic mutational landscape, we constructed a complete structure of the omicron spike protein. Compared with the delta variant, the receptor-binding domain (RBD) of omicron has an increased electrostatic surface potential, but a decreased affinity for the ACE-2 receptor. The N-terminal domain (NTD) has both a decreased surface potential and a lower affinity for lipid rafts. The omicron variant is predicted to be less fusogenic and thus less pathogenic than delta, due to a geometric reorganization of the S1-S2 cleavage site. Overall, these virological parameters suggest that omicron does not have a significant infectivity advantage over the delta variant. However, in omicron, neutralizing epitopes are greatly affected, suggesting that current vaccines will probably confer little protection against this variant. In conclusion, the puzzling mutational pattern of the omicron variant combines contradictory properties which may either decrease (virological properties) or increase (immunological escape/facilitation) the transmission of this variant in the human population. This Janus-like phenotype may explain some conflicting reports on the initial assessment of omicron and provide new insights about the molecular mechanisms controlling its dissemination and pathogenesis worldwide.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Mutación , Unión Proteica , SARS-CoV-2/genética
13.
J Med Virol ; 94(8): 3739-3749, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35467028

RESUMEN

Multiple SARS-CoV-2 variants have successively, or concomitantly spread worldwide since the summer of 2020. A few co-infections with different variants were reported and genetic recombinations, common among coronaviruses, were reported or suspected based on co-detection of signature mutations of different variants in a given genome. Here we report three infections in southern France with a Delta 21J_AY.4-Omicron 21K/BA.1 "Deltamicron" recombinant. The hybrid genome harbors signature mutations of the two lineages, supported by a mean sequencing depth of 1163-1421 reads and a mean nucleotide diversity of 0.1%-0.6%. It is composed of the near full-length spike gene (from codons 156-179) of an Omicron 21K/BA.1 variant in a Delta 21J/AY.4 lineage backbone. Importantly, we cultured an isolate of this recombinant and sequenced its genome. It was observed by scanning electron microscopy. As it is misidentified with current variant screening quantitative polymerase chain reaction (qPCR), we designed and implemented for routine diagnosis a specific duplex qPCR. Finally, structural analysis of the recombinant spike suggested its hybrid content could optimize viral binding to the host cell membrane. These findings prompt further studies of the virological, epidemiological, and clinical features of this recombinant.


Asunto(s)
COVID-19 , SARS-CoV-2 , Secuencia de Bases , COVID-19/diagnóstico , Humanos , Filogenia , SARS-CoV-2/genética
14.
J Med Virol ; 94(7): 3421-3430, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35243660

RESUMEN

The SARS-CoV-2 21K/BA.1, 21L/BA.2, and BA.3 Omicron variants have recently emerged worldwide. To date, the 21L/BA.2 Omicron variant has remained very minority globally but became predominant in Denmark instead of the 21K/BA.1 variant. Here, we describe the first cases diagnosed with this variant in south-eastern France. We identified 13 cases using variant-specific qPCR and next-generation sequencing between 28/11/2021 and 31/01/2022, the first two cases being diagnosed in travelers returning from Tanzania. Overall, viral genomes displayed a mean (±standard deviation) number of 65.9 ± 2.5 (range, 61-69) nucleotide substitutions and 31.0 ± 8.3 (27-50) nucleotide deletions, resulting in 49.6 ± 2.2 (45-52) amino acid substitutions (including 28 in the spike protein) and 12.4 ± 1.1 (12-15) amino acid deletions. Phylogeny showed the distribution in three different clusters of these genomes, which were most closely related to genomes from England and South Africa, from Singapore and Nepal, or from France and Denmark. Structural predictions highlighted a significant enlargement and flattening of the surface of the 21L/BA.2 N-terminal domain of the spike protein compared to that of the 21K/BA.1 Omicron variant, which may facilitate initial viral interactions with lipid rafts. Close surveillance is needed at global, country, and center scales to monitor the incidence and clinical outcome of the 21L/BA.2 Omicron variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , Mutación , Nucleótidos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
15.
Glycoconj J ; 39(1): 1-11, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34328594

RESUMEN

Parkinson's disease (PD) is a major neurodegenerative disorder which exhibits many of the characteristics of a pandemic. Current therapeutic strategies are centered on the dopaminergic system, with limited efficacy, so that a treatment that has a direct impact on the underlying disease pathogenesis is urgently needed. Although α-synuclein is a privileged target for such therapies, this protein has been in the past wrongly considered as exclusively intracellular, so that the impact of paracrine neurotoxicity mechanisms in PD have been largely ignored. In this article we review the data showing that lipid rafts act as plasma membrane machineries for the formation of α-synuclein pore-like oligomers which trigger an increase of intracellular Ca2+. This Ca2+ influx is responsible for a self-sustained cascade of neurotoxic events, including mitochondrial oxidative stress, tau phosphorylation, Ca2+ release from the endoplasmic reticulum, Lewy body formation, and extracellular release of α-synuclein in exosomes. The first step of this cascade is the binding of α-synuclein to lipid raft gangliosides, suggesting that PD should be considered as both a proteinopathy and a ganglioside membrane disorder lipidopathy. Accordingly, blocking α-synuclein-ganglioside interactions should annihilate the whole neurotoxic cascade and stop disease progression. A pipeline of anti-oligomer molecules is under development, among which an in-silico designed synthetic peptide AmyP53 which is the first drug targeting gangliosides and thus able to prevent the formation of α-synuclein oligomers and all downstream neurotoxicity. These new therapeutic avenues challenge the current symptomatic approaches by finally targeting the root cause of PD through a long-awaited paradigm shift.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Progresión de la Enfermedad , Gangliósidos/metabolismo , Humanos , Microdominios de Membrana/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
16.
Arch Virol ; 167(2): 583-589, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35083577

RESUMEN

We detected SARS-CoV-2 of PANGO lineage R.1 with the spike substitution E484K in three patients. Eleven other sequences in France and 8,831 worldwide were available from GISAID, 92% originating from Japan. The three genome sequences from our institute were phylogenetically closest to another from Guinea-Conakry, where one of the patients had travelled. These viruses did not exhibit any unusual features in cell culture. Spike structural predictions indicated a 1.3-time higher transmissibility index than for the globally spread B.1.1.7 variant but also an affinity loss for gangliosides that might have slowed dissemination. The spread of new SARS-CoV-2 mutants/variants is still not well understood and therefore difficult to predict, and this hinders implementation of effective preventive measures, including adapted vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Guinea , Humanos , Mutación , Glicoproteína de la Espiga del Coronavirus/genética
17.
Arch Virol ; 167(4): 1185-1190, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35178586

RESUMEN

SARS-CoV-2 variants have become a major virological, epidemiological, and clinical concern, particularly with regard to the risk of escape from vaccine-induced immunity. Here, we describe the emergence of a new variant, with the index case returning from travel in Cameroon. For 13 SARS-CoV-2-positive patients living in the same geographical area of southeastern France, a qPCR test for screening variant-associated mutations showed an atypical combination. The genome sequences were obtained by next-generation sequencing with Oxford Nanopore Technologies on GridION instruments within about 8 h. Analysis revealed 46 nucleotide substitutions and 37 deletions, resulting in 30 amino acid substitutions and 12 deletions. Fourteen of the amino acid substitutions, including N501Y and E484K, and nine deletions are located in the spike protein. This genotype pattern led to the establishment of a new Pangolin lineage, named B.1.640.2, that is a phylogenetic sister group to the old B.1.640 lineage, which has now been renamed B.1.640.1. The lineages differ by 25 nucleotide substitutions and 33 deletions. The combination of mutations in these isolates and their phylogenetic position indicate, based on our previous definition, that they represent a new variant, which we have named "IHU". These data are a further example of the unpredictability of the emergence of SARS-CoV-2 variants, and of their possible introduction into a given geographical area from abroad.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Mutación , Filogenia , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(36): 18098-18108, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31431523

RESUMEN

Botulinum neurotoxin type B (BoNT/B) recognizes nerve terminals by binding to 2 receptor components: a polysialoganglioside, predominantly GT1b, and synaptotagmin 1/2. It is widely thought that BoNT/B initially binds to GT1b then diffuses in the plane of the membrane to interact with synaptotagmin. We have addressed the hypothesis that a GT1b-synaptotagmin cis complex forms the BoNT/B receptor. We identified a consensus glycosphingolipid-binding motif in the extracellular juxtamembrane domain of synaptotagmins 1/2 and confirmed by Langmuir monolayer, surface plasmon resonance, and circular dichroism that GT1b interacts with synaptotagmin peptides containing this sequence, inducing α-helical structure. Molecular modeling and tryptophan fluorescence spectroscopy were consistent with the intertwining of GT1b and synaptotagmin, involving cis interactions between the oligosaccharide and ceramide moieties of GT1b and the juxtamembrane and transmembrane domains of synaptotagmin, respectively. Furthermore, a point mutation on synaptotagmin, located outside of the BoNT/B-binding segment, inhibited GT1b binding and blocked GT1b-induced potentiation of BoNT/B binding to synaptotagmin-expressing cells. Our findings are consistent with a model in which a preassembled GT1b-synaptotagmin complex constitutes the high-affinity BoNT/B receptor.


Asunto(s)
Toxinas Botulínicas Tipo A , Gangliósidos , Sinaptotagmina I , Animales , Sitios de Unión , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Gangliósidos/química , Gangliósidos/farmacología , Conformación Proteica en Hélice alfa , Dominios Proteicos , Ratas , Sinaptotagmina I/química , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Sinaptotagmina II/química , Sinaptotagmina II/genética , Sinaptotagmina II/metabolismo
19.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36362170

RESUMEN

Neurodegenerative disorders are a major public health issue. Despite decades of research efforts, we are still seeking an efficient cure for these pathologies. The initial paradigm of large aggregates of amyloid proteins (amyloid plaques, Lewis bodies) as the root cause of Alzheimer's and Parkinson's diseases has been mostly dismissed. Instead, membrane-bound oligomers forming Ca2+-permeable amyloid pores are now considered appropriate targets for these diseases. Over the last 20 years, our group deciphered the molecular mechanisms of amyloid pore formation, which appeared to involve a common pathway for all amyloid proteins, including Aß (Alzheimer) and α-synuclein (Parkinson). We then designed a short peptide (AmyP53), which prevents amyloid pore formation by targeting gangliosides, the plasma membrane receptors of amyloid proteins. Herein, we show that aqueous solutions of AmyP53 are remarkably stable upon storage at temperatures up to 45 °C for several months. AmyP53 appeared to be more stable in whole blood than in plasma. Pharmacokinetics studies in rats demonstrated that the peptide can rapidly and safely reach the brain after intranasal administration. The data suggest both the direct transport of AmyP53 via the olfactory bulb (and/or the trigeminal nerve) and an indirect transport via the circulation and the blood-brain barrier. In vitro experiments confirmed that AmyP53 is as active as cargo peptides in crossing the blood-brain barrier, consistent with its amino acid sequence specificities and physicochemical properties. Overall, these data open a route for the use of a nasal spray formulation of AmyP53 for the prevention and/or treatment of Alzheimer's and Parkinson's diseases in future clinical trials in humans.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Animales , Humanos , Ratas , Enfermedad de Parkinson/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Ratas Endogámicas Lew , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Proteínas Amiloidogénicas/metabolismo
20.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555121

RESUMEN

Experimental findings for SARS-CoV-2 related to the glycan biochemistry of coronaviruses indicate that attachments from spike protein to glycoconjugates on the surfaces of red blood cells (RBCs), other blood cells and endothelial cells are key to the infectivity and morbidity of COVID-19. To provide further insight into these glycan attachments and their potential clinical relevance, the classic hemagglutination (HA) assay was applied using spike protein from the Wuhan, Alpha, Delta and Omicron B.1.1.529 lineages of SARS-CoV-2 mixed with human RBCs. The electrostatic potential of the central region of spike protein from these four lineages was studied through molecular modeling simulations. Inhibition of spike protein-induced HA was tested using the macrocyclic lactone ivermectin (IVM), which is indicated to bind strongly to SARS-CoV-2 spike protein glycan sites. The results of these experiments were, first, that spike protein from these four lineages of SARS-CoV-2 induced HA. Omicron induced HA at a significantly lower threshold concentration of spike protein than the three prior lineages and was much more electropositive on its central spike protein region. IVM blocked HA when added to RBCs prior to spike protein and reversed HA when added afterward. These results validate and extend prior findings on the role of glycan bindings of viral spike protein in COVID-19. They furthermore suggest therapeutic options using competitive glycan-binding agents such as IVM and may help elucidate rare serious adverse effects (AEs) associated with COVID-19 mRNA vaccines, which use spike protein as the generated antigen.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Hemaglutinación , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Antivirales , Células Endoteliales , SARS-CoV-2 , Vacunas contra la COVID-19/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA